Home           Contact us           FAQs           
 
   Journal Page   |   Aims & Scope   |   Author Guideline   |   Editorial Board   |   Search
    Abstract
2014 (Vol. 6, Issue: 4)
Article Information:

Effect of Traffic and Tillage on Agriculture Machine Traction and Fuel Consumption in Northern China Plain

Hao Chen and Yali Yang
Corresponding Author:  Hao Chen 

Key words:  Controlled traffic, fuel consumption, soil compaction, traction force, , ,
Vol. 6 , (4): 484-489
Submitted Accepted Published
December 13, 2013 December 23, 2013 April 10, 2014
Abstract:

Controlled traffic with conservation tillage can reduce soil compaction, thus to improve operation performance and fuel consumption of agricultural machine. Northern Chinese Plain is one of the main agricultural production bases with high level of agricultural mechanization. To explore the effect of wheel traffic on machine traction force and fuel consumption, three treatments were conducted: zero tillage with Controlled Traffic (NTCN), Compacted Treatment (CT) and traditional tillage system with random traffic (CK). Results showed that wheel traffic increased soil bulk density in the top soil layer in both fully compacted and random compacted plots. Controlled traffic system should certain potential on soil compaction amelioration. Controlled traffic system reduced traction force on winter wheat planting by 9.5 and 6.3%, compared with fully compacted treatment and random compacted treatment. Controlled traffic system reduced fuel consumption in both winter wheat planting and sub soiling (significantly), compared with fully compacted treatment and random compacted treatment. Results indicated that controlled traffic system had certain advantages in soil compaction and fuel consumption in this region and with high application potential.
Abstract PDF HTML
  Cite this Reference:
Hao Chen and Yali Yang, 2014. Effect of Traffic and Tillage on Agriculture Machine Traction and Fuel Consumption in Northern China Plain.  Advance Journal of Food Science and Technology, 6(4): 484-489.
    Advertise with us
 
ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Current Information
   Sales & Services
   Contact Information
  Executive Managing Editor
  Email: admin@maxwellsci.com
  Publishing Editor
  Email: support@maxwellsci.com
  Account Manager
  Email: faisalm@maxwellsci.com
  Journal Editor
  Email: admin@maxwellsci.com
  Press Department
  Email: press@maxwellsci.com
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2009. MAXWELL Science Publication, a division of MAXWELLl Scientific Organization. All rights reserved