Home           Contact us           FAQs           
   Journal Page   |   Aims & Scope   |   Author Guideline   |   Editorial Board   |   Search
2013 (Vol. 5, Issue: 02)
Article Information:

Empirical Bayes Estimation for Exponential Model Using Non-parameter Polynomial Density Estimator

Manfeng Liu and Haiping Ren
Corresponding Author:  Manfeng Liu 

Key words:  Empirical bayes estimator, LINEX loss function, non-parameter polynomial density estimator, squared error loss, , ,
Vol. 5 , (02): 392-397
Submitted Accepted Published
April 29, 2012 May 23, 2012 January 11, 2013

In this study, we study the empirical Bayes estimation of the parameter of the exponential distribution. In the empirical Bayes procedure, we employ the non-parameter polynomial density estimator to the estimation of the unknown marginal probability density function, instead of estimating the unknown prior probability density function of the parameter. Empirical Bayes estimators are derived for the parameter of the exponential distribution under squared error and LINEX loss functions. We use numerical examples to compare the empirical Bayes estimators we obtained under squared error and LINEX loss functions and we get the result of the mean square error of the empirical Bayes estimator under LINEX loss is usually smaller than the estimator under squared error loss function, so it is more better.
Abstract PDF HTML
  Cite this Reference:
Manfeng Liu and Haiping Ren, 2013. Empirical Bayes Estimation for Exponential Model Using Non-parameter Polynomial Density Estimator.  Research Journal of Applied Sciences, Engineering and Technology, 5(02): 392-397.
    Advertise with us
ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Current Information
   Sales & Services
   Contact Information
  Executive Managing Editor
  Email: admin@maxwellsci.com
  Publishing Editor
  Email: support@maxwellsci.com
  Account Manager
  Email: faisalm@maxwellsci.com
  Journal Editor
  Email: admin@maxwellsci.com
  Press Department
  Email: press@maxwellsci.com
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2009. MAXWELL Science Publication, a division of MAXWELLl Scientific Organization. All rights reserved