Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology

    Abstract
2013(Vol.5, Issue:04)
Article Information:

Application of Mathematical Model of Evacuation for Large Stadium Building

Bing Zhang
Corresponding Author:  Bing Zhang 
Submitted: July 17, 2012
Accepted: August 28, 2012
Published: February 01, 2013
Abstract:
The statistics of sports arena accidents show that the main reasons which leading to crowd stampede are the exports blockage and the poor surrounding transportations. In the process of evacuation, the most common problem is that there are a large number of people are stranded and also they are the main carrier which leading to crowded stampede. With large amounts of data and reasonable evaluations on staffs and transportation instruments. We propose inflow model in the crowding state, principle of maximum flow on channel design, optimal model of vehicle parking, evacuation model of subways and buses, according to sections of evacuation in stadiums. We analyze their usage area, marginal conditions and real data. Finally, we get some valuable results, which are curves of density and flow, evacuation time, formula for channel design, optimal parking design and formulas for evacuation time of subways and buses. Such data suits the real data from varied references. With the help of models and results, we get the total time of evacuation, simulation of progress and give parts of real situations of evacuation. According to such results, 100000 people’s evacuation can be finished in about 45 min. On such basis, we propose some optimal plans for stadium and its surroundings building.

Key words:  Evacuation, large flow, mathematical model, stadium, , ,
Abstract PDF HTML
Cite this Reference:
Bing Zhang, . Application of Mathematical Model of Evacuation for Large Stadium Building. Research Journal of Applied Sciences, Engineering and Technology, (04): 1432-1440.
ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved