Home           Contact us           FAQs           
   Journal Page   |   Aims & Scope   |   Author Guideline   |   Editorial Board   |   Search
2013 (Vol. 5, Issue: 10)
Article Information:

Near-threshold Computing of Single-rail MOS Current Mode Logic Circuits

Ruiping Cao and Jianping Hu
Corresponding Author:  Jianping Hu 

Key words:  High-speed applications, low power, MOS current mode logic, near-threshold computing, single-rail structure, ,
Vol. 5 , (10): 2991-2996
Submitted Accepted Published
September 16, 2012 November 01, 2012 March 25, 2013

Scaling supply voltage is an efficient technique to achieve low power-delay product. This study presents low-power Single-Rail MOS Current Mode Logic (SRMCML) circuits which operate on near-threshold region. The near-threshold operations for the basic SRMCML circuits such as inverter/buffer, OR2/NOR2 and 2/NAND2, OR3/NOR3 and XOR3/NXOR3 are investigated. All circuits are simulated with HSPICE at the SMIC 130 nm CMOS process by varying supply voltage from 0.6V to 1.3V with 0.1V steps. Based on the simulation results, lowering supply voltage is advantageous. The power dissipations of the proposed near-threshold SRMCML basic gates are almost the same as the conventional Dual-Rail MCML (DRMCML) circuits and the delay of the SRMCML is less than the DRMCML because of its single-rail scheme.
Abstract PDF HTML
  Cite this Reference:
Ruiping Cao and Jianping Hu, 2013. Near-threshold Computing of Single-rail MOS Current Mode Logic Circuits.  Research Journal of Applied Sciences, Engineering and Technology, 5(10): 2991-2996.
    Advertise with us
ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Current Information
   Sales & Services
   Contact Information
  Executive Managing Editor
  Email: admin@maxwellsci.com
  Publishing Editor
  Email: support@maxwellsci.com
  Account Manager
  Email: faisalm@maxwellsci.com
  Journal Editor
  Email: admin@maxwellsci.com
  Press Department
  Email: press@maxwellsci.com
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2009. MAXWELL Science Publication, a division of MAXWELLl Scientific Organization. All rights reserved