Home           Contact us           FAQs           
    
     Journal Home     |     Aim & Scope    |    Author(s) Information      |     Editorial Board     |     MSP Download Statistics
    Abstract
2013 (Vol. 5, Issue: 21)
Article Information:

Effectiveness of Statistical Features for Human Emotions Classification using EEG Biosensors

Chai Tong Yuen, Woo San San, Jee-Hou Ho and M. Rizon
Corresponding Author:  Chai Tong Yuen 

Key words:  EEG, human emotions, neural network, statistical features, , ,
Vol. 5 , (21): 5083-5089
Submitted Accepted Published
October 22, 2012 December 14, 2012 May 20, 2013
Abstract:

This study proposes a statistical features-based classification system for human emotions by using Electroencephalogram (EEG) bio-sensors. A total of six statistical features are computed from the EEG data and Artificial Neural Network is applied for the classification of emotions. The system is trained and tested with the statistical features extracted from the psychological signals acquired under emotions stimulation experiments. The effectiveness of each statistical feature and combinations of statistical features in classifying different types of emotions has been studied and evaluated. In the experiment of classifying four main types of emotions: Anger, Sad, Happy and Neutral, the overall classification rate as high as 90% is achieved.
Abstract PDF HTML
  Cite this Reference:
Chai Tong Yuen, Woo San San, Jee-Hou Ho and M. Rizon, 2013. Effectiveness of Statistical Features for Human Emotions Classification using EEG Biosensors.  Research Journal of Applied Sciences, Engineering and Technology, 5(21): 5083-5089.
    Advertise with us
 
ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Current Information
   Sales & Services
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2015. MAXWELL Scientific Publication Corp., All rights reserved