Home           Contact us           FAQs           
 
   Journal Page   |   Aims & Scope   |   Author Guideline   |   Editorial Board   |   Search
    Abstract
2014 (Vol. 7, Issue: 2)
Article Information:

Design of an Almost Harmonic-free TCR

Abdulkareem Mokif Obais and Jagadeesh Pasupuleti
Corresponding Author:  Abdulkareem Mokif Obais 

Key words:  Controlled reactors, power quality, reactive power control, TCR, , ,
Vol. 7 , (2): 388-395
Submitted Accepted Published
April 22, 2013 May 03, 2013 January 10, 2014
Abstract:

In this study, the traditional thyristor controlled reactor is conditioned to be an almost harmonic-free inductive static Var compensator. The proposed configuration is constructed of a traditional TCR shunted by a parallel resonance circuit and the parallel combination is connected in series to a series resonance circuit. The parallel and series resonance circuits are tuned at the power system fundamental frequency. The series resonance circuit offers almost short circuit to the AC source current fundamental, while it offers very high impedance to the harmonic current components released by the TCR. The parallel resonance circuit offers very high impedance to the AC source current fundamental, while it offers almost short circuits to the harmonic current components released by the TCR. The two circuits operate coherently such that negligible current harmonics are permitted to flow in the AC source side. This type of harmonic treatment is not sensitive to other harmonic sources in the power system network, where this compensator is installed. The no load operating losses of this compensator are negligible compared to its reactive power rating. The proposed compensator is designed and tested on PSpice.
Abstract PDF HTML
  Cite this Reference:
Abdulkareem Mokif Obais and Jagadeesh Pasupuleti, 2014. Design of an Almost Harmonic-free TCR.  Research Journal of Applied Sciences, Engineering and Technology, 7(2): 388-395.
    Advertise with us
 
ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Current Information
   Sales & Services
   Contact Information
  Executive Managing Editor
  Email: admin@maxwellsci.com
  Publishing Editor
  Email: support@maxwellsci.com
  Account Manager
  Email: faisalm@maxwellsci.com
  Journal Editor
  Email: admin@maxwellsci.com
  Press Department
  Email: press@maxwellsci.com
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2009. MAXWELL Science Publication, a division of MAXWELLl Scientific Organization. All rights reserved