Home           Contact us           FAQs           
 
   Journal Page   |   Aims & Scope   |   Author Guideline   |   Editorial Board   |   Search
    Abstract
2013 (Vol. 5, Issue: 11)
Article Information:

Biodegradation of Aliphatic-aromatic Coplyester under Thermophilic Conditions

Elsayed B. Belal
Corresponding Author:  Elsayed B. Belal 

Key words:  Actinomycetes, biodegradation, bioplastic, enzymatic degradation, thermophilic conditions, ,
Vol. 5 , (11): 677-690
Submitted Accepted Published
August 12, 2013 August 27, 2013 November 20, 2013
Abstract:

The biodegradation of poly (tetramethylene adipate-co-tetramethylene terephthalate) (BTA-copolyester) as synthetic polyester was investigated under thermophilic conditions. Two efficient BTA degrading actinomycetes were isolated from compost at thermophilic phase. These strains were identified as Thermobifida fusca and Thermobispora bispora. The degradation rate for BTA films within 7 days was 17.12 and 16.96 mg/week.cm2 by T. fusca and T. bispora, respectively. The optimum BTA40:60 degradation conditions are obtained as pH7 and 55C. The both strains exhibited a wider substrate spectrum as they are able to degrade synthetic polyesters (BTA40:60, PCL-S MaterBi ZF03U/A) and natural polymers (poly-&beta-hydroxybutyric acid (PHB) and carboxymethyl cellulose). It was shown that the extracellular hydrolyases activity from the both strains was induced in the presence of BTA-copolyester, while the presence of additional carbon sources such as glucose or a complex medium suppressed enzyme formation. Tributyrin as triglycerides was degraded by the both crude concentrated BTA-hydrolases. In contrast the enzyme was not capable to depolymerize the natural polymers PHB and carboxymethyl cellulose, although the organism itself degraded both types of polymers. The obtained results showed that the degradation rate with T. fusca BTA40:60-hydrolase was 3.67 mg/day.cm2 and was 3.5 mg/day.cm2 with T. bispora BTA40:60-hydrolase. The pH optimum for BTA-hydrolases was 7 with 20 and 100 mM phosphate buffer and it was 6 with 150 mM citrate buffer. Finally, it could be concluded that actinomycetes and their hydrolases play an outstanding role in recycling of biodegradable plastics under thermophilic phase during composting process.
Abstract PDF HTML
  Cite this Reference:
Elsayed B. Belal, 2013. Biodegradation of Aliphatic-aromatic Coplyester under Thermophilic Conditions.  Research Journal of Environmental and Earth Sciences, 5(11): 677-690.
    Advertise with us
 
ISSN (Online):  2041-0492
ISSN (Print):   2041-0484
Submit Manuscript
   Current Information
   Sales & Services
   Contact Information
  Executive Managing Editor
  Email: admin@maxwellsci.com
  Publishing Editor
  Email: support@maxwellsci.com
  Account Manager
  Email: faisalm@maxwellsci.com
  Journal Editor
  Email: admin@maxwellsci.com
  Press Department
  Email: press@maxwellsci.com
Home  |  Contact us  |  About us  |  Privacy Policy
Copyright © 2009. MAXWELL Science Publication, a division of MAXWELLl Scientific Organization. All rights reserved