Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Modification of Porang (Amorphophallus oncophyllus) Flour by Acid and Thermal Process using Conventional Heating in Waterbath and Microwave Irradiation

1, 2Abdul Manab, 2Hari Purnomo, 3Simon Bambang Widjanarko and 2Lilik Eka Radiati
1Post Graduate Program, Faculty of Animal Husbandry, Brawijaya University
2Department of Animal Food Technology, Faculty of Animal Husbandry Brawijaya University
3Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, East Java, Indonesia
Advance Journal of Food Science and Technology  2016  6:290-301
http://dx.doi.org/10.19026/ajfst.12.2963  |  © The Author(s) 2016
Received: May ‎25, ‎2015  |  Accepted: June ‎22, ‎2015  |  Published: October 25, 2016

Abstract

Modified porang flour by lactic acid and conventional heating using waterbath (PAW) and microwave radiation (PAM) were determined its functional group using FTIR, the chemical structure were studied using H1NMR, molecular weight were measured using HPLC-SEC and its microstructure were studied using SEM, particles size were measured using PSA and rheology characteristics were determined using Rheometer. The results showed that modified porang either PAW and PAM showed changes on functional group peaks compared to one of native porang flour included OH, CH3, C-C, C = O, C-O-C, mannose and glucose groups. H1NMR spectra of modified porang flour (PAW and PAM) were similar mainly in proton of CH3 and CH2, molecular weight were higher at PAW 2.0×106 and PAM 3.0×106, while particles size of PAW and PAM were smaller. The microstructure of PAW and PAM were porous and spongy indicated that PAW and PAM had higher moisture accessability on the amorph site. Storage modulus (G’) dan loss modulus (G”) PAW and PAM decreasing with the increased temperature. Lower G’ compared to G” and modulus (G’ and G”) did not showed crossing indicated that PAW and PAM have a stable visco-elasticity. It can be concluded that functional group peaks of modified porang flour (PAW and PAM) changed differently compared to native porang flour, H1 -NMR spectra of modified porang flour were similar, with bigger moleculer weight of PAM than PAW, the microstructure were porous and spongy and rheology characteristics indicated that an unchanged visco-elastic system by thermal treatments.

Keywords:

Lactic acid, microwave, modified porang, porang flour, waterbath,


References

  1. An, N.T., D.T. Thien, N.T. Dong, P.L. Dung and N.V. Du, 2009. Characterization of polysaccharide from amorphophallus paeoniifolius in Vietnam. J. Chem., 47(6B): 155-159.
  2. Arifin, M.A., 2001. Drying iles-iles tuber chips by Mechanic to improve iles-iles chips quality (Pengeringan Kripik Umbi Iles-iles secara mekanik untuk meningkatkan mutu keripik iles-iles). M.A. Thesis, Teknologi Pasca Panen. PPS. IPB, Agriculture Institute, Bogor.
  3. Charoenrein, S., O. Tatirat, K. Rengsutthi and M. Thongngam, 2011. Effect of konjac glucomannan on syneresis, textural properties and the microstructure of frozen rice starch gels. Carbohyd. Polym., 83: 291-296.
    Direct Link
  4. Chen, J., J. Li and B. Li, 2011. Identification of molecular driving forces involved in the gelation of konjac glucomannan: Effect of degree of deacetylation on hydrophobic association. Carbohyd. Polym., 86(2): 865-871.
    Direct Link
  5. Chen, L.G., Z.L. Liu and R.X. Zhou, 2005. Synthesis and properties of degradable hydrogels of konjac glucomannan grafted acrylic acid for colon-specific drug delivery. Polymer, 46(16): 6274-6281.
    Direct Link
  6. Choi, K.M., M.C. Choi, D.H. Han, T.S. Park and C.S. Ha, 2013. Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Eur. Polym. J., 49: 2356-2364.
    Direct Link
  7. Chua, M., K. Chan, T.J. Hocking, P.A. Williams, C.J. Perry and T.C. Baldwin, 2012. Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch. Carbohyd. Polym., 87(3): 2202-2210.
    Direct Link
  8. Du, X., J. Li, J. Chen and B. Li, 2012. Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Res. Int., 46: 270-278.
    Direct Link
  9. Enomoto-Rogers, Y., Y. Ohmomo and T. Iwata, 2013. Syntheses and characterization of konjac glucomannan acetate and their thermal and mechanical properties. Carbohyd. Polym., 92(2): 1827-1834.
    Direct Link
  10. Gao, S.J. and L. Zhang, 2001a. Molecular weight effects on properties of polyurethane/nitrokonjac glucomannan semiinterpenetrating polymer networks. Macromolecules, 34(7): 2202-2207.
    Direct Link
  11. Gao, S.J. and L. Zhang, 2001b. Semi-interpenetrating polymer networks from castor oil-based polyurethane and nitrokonjac glucomannan. J. Appl. Polym. Sci., 81(9): 2076-2083.
    Direct Link
  12. Gårdebjer, S., A. Bergstrand, A. Idström, C. Börstell, S. Naana, L. Nordstierna and A. Larsson, 2015. Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos. Sci. Technol., 107(11): 1-9.
    Direct Link
  13. Gong, Q., L.Q. Wang and K. Tu, 2006. In situ polymerization of starch with lactic acid in aqueous solution and the microstructure characterization. Carbohyd. Polym., 64(4): 501-509.
    Direct Link
  14. Ha, W., H. Wu, X.L. Wang, S.L. Peng, L.S. Ding, S. Zhang and B.J. Li, 2011. Self-aggregates of cholesterol-modified carboxymethyl konjac glucomannan conjugate: Preparation, characterization, and preliminary assessment as a carrier of etoposide. Carbohyd. Polym., 86(2): 513-519.
    Direct Link
  15. He, X.J., H.X. Wang, I. Amadou and X.J. Qin, 2012. Textural and rheological properties of hydrolyzed konjac glucomannan and kappa-carrageenan: Effect of molecular weight, total content, ph and temperature on the mixed system gels. Emir. J. Food Agric., 24(3): 200-207.
    Direct Link
  16. Herranz, B., C.A. Tovar, B. Solo-de-Zaldívar and A.J. Borderias, 2012. Effect of alkalis on konjac glucomannan gels for use as potential gelling agents in restructured seafood products. Food Hydrocolloid., 27(1): 145-153.
    Direct Link
  17. Huang, J., S. Gao and X. Shen, 2010. Konjac glucomannan nanocrystals prepared by acid hydrolysis. e-Polymers, 10(1): 11-18.
    Direct Link
  18. Irawan, S.S. and S.B. Widjanarko, 2013. Methylation at porang flour (amorphophallus muelleri) using dimethyl sulfate reagent in varied concentration. J. Pangan dan Agroindustri, 1(1): 148-156.
  19. Jin, W., W. Xu, Z. Li, J. Li, B. Zhou, C. Zhang and B. Li, 2014. Degraded konjac glucomannan by ?-ray irradiation assisted with ethanol: Preparation and characterization. Food Hydrocolloid., 36: 85-92.
    Direct Link
  20. Katsuraya, K., K. Okuyama, K. Hatanaka, R. Oshima, T. Sato and K. Matsuzaki, 2003. Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy. Carbohyd. Polym., 53(2): 183-189.
    Direct Link
  21. Kratchanova, M., E. Pavlova and I. Panchev, 2004. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohyd. Polym., 56(2): 181-185.
    Direct Link
  22. Li, B. and B.J. Xie, 2003. Study on molecular chain morphology and chain parameters of konjac glucomannan. Acta Pharm. Sinica, 38(11): 838-842.
    Direct Link
  23. Liu, F., X. Luo, X. Lin, L. Liang and Y. Chen, 2009. Removal of copper and lead from aqueous solution by carboxylic acid functionalized deacetylated konjac glucomannan. J. Hazard. Mater., 171(1-3): 802-808.
    Direct Link
  24. Luo, X., X. Yao, C. Zhang, X. Lin and B. Han, 2012. Preparation of mid-to-high molecular weight konjac glucomannan (MHKGM) using controllable enzyme-catalyzed degradation and investigation of MHKGM properties. J. Polym. Res., 19: 9849.
    Direct Link
  25. Luo, X., P. He and X. Lin, 2013. The mechanism of sodium hydroxide solution promoting the gelation of Konjac glucomannan (KGM). Food Hydrocolloid., 30(1): 92-99.
    Direct Link
  26. Maeda, M., H. Shimahara and N. Sugiyama, 1980. Detailed examination of the branched structure of konjac glucomannan. Agr. Biol. Chem. Tokyo, 44(2): 245-252.
    Direct Link
  27. Meng, F., L. Zheng, Y. Wang, Y. Liang and G. Zhong, 2014. Preparation and properties of konjac glucomannan octenyl succinate modified by microwave method. Food Hydrocolloid., 38: 205-210.
    Direct Link
  28. Pan, T., S. Peng, Z. Xu, B. Xiong, C. Wen, M. Yao and J. Pang, 2013. Synergetic degradation of konjac glucomannan by ?-ray irradiation and hydrogen peroxide. Carbohyd. Polym., 93(2): 761-767.
    Direct Link
  29. Pan, Z., J. Meng and Y. Wang, 2011. Effect of alkalis on deacetylation of konjac glucomannan in mechano-chemical treatment. Particuology, 9(3): 265-269.
    Direct Link
  30. Pandey, A., G.C. Pandey and P.B. Aswath, 2008. Synthesis of polylactic acid–polyglycolic acid blends using microwave radiation. J. Mech. Behav. Biomed., 1(3): 227-233.
    Direct Link
  31. Pivsa-Art, S., N. Phansroy, W. Thodsaratpiyakul, C. Sukkaew, W. Pivsa-Art, S. Lintong and T. Dedgheng, 2014. Preparation of biodegradable polymer copolyesteramides from L-lactic acid oligomers and polyamide monomers. Energ. Proc., 56: 648-658.
    Direct Link
  32. Pranamuda, H., R. Giarni, A. Pradana, I.S.A. Mahsunah and D. Dewi, 2012. Aplikasi Beta Glukan Sebagai Bahan Berkhasiat Imunomodulator Dan Antikanker. Prosiding InSINas, 0679: 70-73.
    Direct Link
  33. Riou, V., A. Vernhet, T. Doco and M. Moutounet, 2002. Aggregation of grape seed tannins in model wine-effect of wine polysaccharides. Food Hydrocolloid., 16(1): 17-23.
    Direct Link
  34. Takigami, S., T. Taldguehi and G.O. Phillips, 1997. Microscopical studies of the tissue structure of konjac tubers. Food Hydrocolloid., 11(4): 479-484.
    Direct Link
  35. Takigami, S., 2000. Konjac Mannan. In: Phillips, G.O. and P.A. Williams (Eds.), Handbook of Hydrocolloids. CRC Press, New York, pp: 413-424.
  36. Tao, Y. and W. Xu, 2008. Microwave-assisted solubilization and solution properties of hyperbranched polysaccharide. Carbohyd. Res., 343: 3071-3078.
    Direct Link
  37. Tatirat, O. and S. Charoenrein, 2011. Physicochemical properties of konjac glucomannan extracted from konjac flour by a simple centrifugation process. LWT-Food Sci. Technol., 44(10): 2059-2063.
    Direct Link
  38. Tatirat, O., S. Charoenrein and W.L. Kerr, 2012. Physicochemical properties of extrusion-modified konjac glucomannan. Carbohyd. Polym., 87(2): 1545-1551.
    Direct Link
  39. Tatirat, O., C. Charunuch, W.L. Kerr and S. Charoenrein, 2013. Use of ethanol solution for extruding konjac glucomannan to modify its water absorption and water solubility. Kasetsart J. Nat. Sci., 47: 132-142.
    Direct Link
  40. Wang, C., M. Xu, W.P. Lv, P. Qiu, Y.Y. Gong and D.S. Li, 2012. Study on rheological behavior of konjac glucomannan. Phys. Proc., 33: 25-30.
    Direct Link
  41. Wang, L.F., J.C. Duan, W.H. Miao, R.J. Zhang, S.Y. Pan and X.Y. Xu, 2011. Adsorption-desorption properties and characterization of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate. J. Hazard. Mater., 186(2-3): 1681-1686.
    Direct Link
  42. Wen, X., X. Cao, Z. Yin, T. Wang and C. Zhao, 2009. Preparation and characterization of konjac glucomannan–poly(acrylic acid) IPN hydrogels for controlled release. Carbohyd. Polym., 78(2): 193-198.
    Direct Link
  43. Widjanarko, S.B., A. Nugroho and T. Estiasih, 2011. Functional interaction components of protein isolates and glucomannan in food bars by FTIR and SEM studies. Afr. J. Food Sci., 5(1): 12-21.
    Direct Link
  44. Xia, B., W. Ha, X.W. Meng, T. Govender, S.L. Peng, L.S. Ding, B.J. Li and S. Zhang, 2010. Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohyd. Polym., 79(3): 648-654.
    Direct Link
  45. Xiao, C., Y. Lu and L. Zhang, 2001. Preparation and physical properties of konjac glucomannan-polyacrylamide blend films. J. Appl. Polym. Sci., 81(4): 882-888.
    Direct Link
  46. Xu, C., X. Luo, X. Lin, X. Zhuo and L. Liang, 2009. Preparation and characterization of polylactide/thermoplastic konjac glucomannan blends. Polymer, 50(15): 3698-3705.
    Direct Link
  47. Xu, Z., Y. Yang, Y. Jiang, Y. Sun, Y. Shen and J. Pang, 2008. Synthesis and characterization of konjac glucomannan-graft-polyacrylamide via gamma-irradiation. Molecules, 13(3): 490-500.
    Direct Link
  48. Yang, K., Z. Wang, T. Nakajima, K. Nishinari and T. Brenner, 2013. The effect of degradation on ?-carrageenan/locust bean gum/konjac glucomannan gels at acidic pH. Carbohyd. Polym., 98: 744-749.
    Direct Link
  49. Yu, H., Y. Huang, H. Ying and C. Xiao, 2007. Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan. Carbohyd. Polym., 69(1): 29-40.
    Direct Link
  50. Zhang, Z. and Z.K. Zhao, 2009. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohy. Res., 344(15): 2069-2972.
    Direct Link

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved