Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Effects of Incorporation of Nano-carbon into Slow-released Fertilizer on Rice Yield and Nitrogen Loss in Surface Water of Paddy Soil

Mei-yan Wu
Engineering Research Center of Wetland Agriculture in the Middle Reaches of the Yangtze River, Ministry of Education, Jingzhou 434025, China
Advance Journal of Food Science and Technology  2013  4:398-403
http://dx.doi.org/10.19026/ajfst.5.3278  |  © The Author(s) 2013
Received: October 31, 2012  |  Accepted: December 22, 2012  |  Published: April 15, 2013

Abstract

The use of slow-released fertilizer has become a new trend to save fertilizer consumption and to minimize environmental pollution. Duo to its high surface energy and chemical activity, the application domain of nano-materials has significantly expanded with the development of nanotechnology in conjunction with biotechnology in various fields, such as water purification, wastewater treatment, environmental remediation and food processing and packaging, industrial and household purposes, medicine and in smart sensor development. However, use in agriculture, especially for plant production, is an under-explored area in the research community. In this study, nano-carbon was incorporated into slow-released fertilizer and the influence on rice yield and nitrogen loss in surface water of paddy soil was conducted by field experiment. The experiment was a randomized block design with five treatments and three replications, the Control (CK), Jingzhengda Slow-released fertilizer (JSCU, N 42%), Jingzhengda Slow-released fertilizer and nano-Carbon (JSCU+C), Stanley slow-released compound fertilizer (SSRF, N-P2O5-K2O = 20:9:11), Stanley Slow-Released compound Fertilizer and nano-carbon (SSRF+C), respectively. The results indicated that the total nitrogen concentration in surface water of paddy soil increased rapidly at the 2nd day after fertilization and decreased gradually after that in all treatments. Compare to JSCU, sampling at different times after fertilization, the total nitrogen concentration in surface water of paddy soil under JSCU+C treatment was declined in the range of 19.1-46.8%, the average was 31.0% and the time of nitrogen runoff loss due to rainfall was shorten 2.2 day. For SSCU+C treatment, the average total nitrogen concentration was decreased by 29.8% and the time of nitrogen runoff loss was shortening 1.8 day. The rice grain yield and nitrogen use efficiency were increased significantly after applying slow-released fertilizer added nano-carbon. The rice grain yield and nitrogen use efficiency under JSRU+C and SSRF+C treatments were 11650.5 kg/hm2, 21.4 kg/kg N and 11201.0 kg/hm2, 18.4 kg/kg N, respectively, increased by 11.3%, 7.9 kg/kg N compared with JSRU and 5.6% and 4.4 kg/kg N compared with SSRF. The rate of saving nitrogen was 10.1 and 5.1% for JSCU+C and SSRF+C, respectively. These results suggest that it is possible that the nano-carbon is used as coating material for slow-released fertilizer and incorporation of nano-carbon into slow-released fertilizer is benefit for reducing water pollution, especially JSCU+C.

Keywords:

Nano-carbon, nitrogen agronomic utilization efficiency, rice, rice grain yield, total nitrogen in surface, water of paddy soil,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved