Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Performance Analysis of an Embarrassingly Parallel Application in Atmospheric Modeling

M. Varalakshmi and Daphne Lopez
VIT University, Vellore, India
Research Journal of Applied Sciences, Engineering and Technology  2015  12:1417-1423
http://dx.doi.org/10.19026/rjaset.11.2249  |  © The Author(s) 2015
Received: July ‎24, ‎2015  |  Accepted: August ‎30, ‎2015  |  Published: December 25, 2015

Abstract

This study aims at making a comparative study of various parallel programming models for a compute intensive application pertaining to Atmospheric modeling. Atmospheric modeling deals with predicting the behavior of atmosphere through mathematical equations governing the atmospheric fluid flows. The mathematical equations are nonlinear partial differential equations which are difficult to solve analytically. Thus fundamental governing equations of atmospheric motion are discretized into algebraic forms that are solved using numerical methods to obtain flow-field values at discrete points in time and/or space. Solving these equations often requires huge computational resource, which is normally available with high-speed supercomputers. Shallow Water equations provide a useful framework for the analysis of dynamics of large-scale atmospheric flow and for the analysis of various numerical methods that might be applied to the solution of these equations. In this study, Finite volume approach has been used for discretizing these equations that leads to a number of algebraic equations equal to the number of time instants at which the flow field values are to be evaluated. It is apparent that the application is embarrassingly parallel and its parallelization will suppress communication overhead. A High Performance Compute cluster has been employed for solving the equations involved in atmospheric modeling. Use of OpenMP and MPI APIs has paved the way to study the behavior of shared memory programming model and the message passing programming model in the context of such a highly compute intensive application. It is observed that no additional benefit can be enjoyed by creating too many software threads than the available hardware threads, as the execution resources should be shared among them.

Keywords:

Atmospheric modeling, MPI, OpenMP, parallel computing, shallow water equations,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved