Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Improvement in Oil Extraction from Microalgae/Algae for Biodiesel Production using Microwave Assisted Oil Extraction with Methyl Ester

N. Saifuddin, A.B. Amzar and P. Priatharsini
Centre for Renewable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
Research Journal of Applied Sciences, Engineering and Technology  2016  4:331-340
http://dx.doi.org/10.19026/rjaset.13.2950  |  © The Author(s) 2016
Received: April ‎11, ‎2016  |  Accepted: May ‎13, ‎2016  |  Published: August 15, 2016

Abstract

The prospects of producing carbon-neutral biofuels from microalgae appear bright because of their unique features such as high CO2-sequestering capability and ability to grow in wastewater/seawater/brackish water and high-lipid productivity. Extraction of lipids from microalgae/algae is still considered a challenging process due to the difficulties faced during extraction. The commercial production of microalgae biofuels including biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. This study reports the solvent effectiveness of methyl ester (biodiesel) for microalgal lipid extraction together with microwave irradiation. Two co-solvent systems, BD20 (20% Methyl Ester and 80% Ethanol) and BD40 (40% Methyl Ester and 60% Ethanol) were experimented at time intervals of 5, 10 and 15 min, by Microwave-Assisted Extraction at 100 Watts. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. Results were compared to another system, Chloroform 33% and Ethanol 67% by Microwave-Assisted Extraction as well as conventional Soxhlet extraction as the control. The results obtained from the experiment shows that BD40 has the highest lipid yield for all time intervals compared to BD20, Chloroform + Ethanol. When compared to the control, all of the samples that were extracted with the microwave had a higher lipid yield than Soxhlet Extraction.

Keywords:

Co-solvent, lipid extraction, methyl ester, microalgae, microwave irradiation,


References

  1. Abd El Baky, H.H., S.G. El-Baroty and A. Bouaid, 2014. Lipid induction in Dunaliella salina culture aerated with various levels CO2 and its biodiesel production. J. Aquac. Res. Dev., 5(3): 223-228.
  2. Alam, F., A. Date, R. Rasjidin, S. Mobin, H. Moria and A. Baqui, 2012. Biofuel from algae- Is it a viable alternative? Proc. Eng., 49: 221-227.
    Direct Link
  3. Amarni, F. and H. Kadi, 2010. Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane: Comparison with the conventional extraction. Innov. Food Sci. Emerg., 11(2): 322-327.
    Direct Link
  4. Arar, E.J., 1997. In Vitro Determination of Chlorophylls a, b, c1 + c2 and Pheopigments in Marine and Freshwater Algae by Visible Spectrophotometry. Revision 1.2, U.S. Environmental Protection Agency, Washington, D.C.
  5. Balasubramanian, S., J.D. Allen, A. Kanitkar and D. Boldor, 2011. Oil extraction from Scenedesmus obliquus using a continuous microwave system--design, optimization, and quality characterization. Bioresource Technol., 102(03): 3396-3403.
    CrossRef    PMid:20980140    
  6. BP Statistical Review of World Energy, 2015. Retrieved form: https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review -2015/bp-statistical-review-of-world-energy-2015-full-report.pdf.
    Direct Link
  7. Brennan, L. and P. Owende, 2010. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev., 14(2): 557-577.
    Direct Link
  8. Bucy, H.B., M.E. Baumgardner and A.J. Marchese, 2012. Chemical and physical properties of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate. Algal Res., 1(1): 57-69.
    Direct Link
  9. Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv., 25: 294-306.
    CrossRef    PMid:17350212    
  10. Chiu, S.Y., C.Y. Kao, M.T. Tsai, S.C. Ong, C.H. Chen and C.S. Lin, 2009. Lipid Accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technol., 100(2): 833-838.
    Direct Link
  11. Cravotto, G., L. Boffa, S. Mantegna, P. Perego, M. Avogadro and P. Cintas, 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem., 15(5): 898-902.
    Direct Link
  12. Demirbas, A., 2011. Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Appl. Energ., 88(10): 3541-3547.
    Direct Link
  13. Guillard, R.R.L., 1975. Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith W.L. and M.H. Chanley (Eds.), Culture of Marine Invertebrate Animals. Plenum Press, New York, USA, pp: 26-60.
    Direct Link
  14. Halim, R., B. Gladman, M.K. Danquah and P.A. Webley, 2011. Oil extraction from microalgae for biodiesel production. Bioresource Technol., 102(1): 178-185.
    Direct Link
  15. Hosikian, A., S. Lim, R. Halim and M.K. Danquah, 2010. Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int. J. Chem. Eng., 10: 1-11.
    Direct Link
  16. Hu, J., Z. Du, Z. Tang and E. Min, 2004. Study on the solvent power of a new green solvent: Biodiesel. Ind. Eng. Chem. Res., 43(24): 7928-7931.
    Direct Link
  17. Iqbal, J. and C. Theegala, 2013. Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res., 2(1): 34-42.
    Direct Link
  18. Kasim, F.H., A.P. Harvey and R. Zakaria, 2010. Biodiesel production by in situ transesterification. Biofuels, 1(2): 355-365.
    Direct Link
  19. Knothe, G. and K.R. Steidley, 2011. Fatty acid alkyl esters as solvents: Evaluation of the Kauri-Butanol value. Comparison to hydrocarbons, dimethyl diesters, and other oxygenates. Ind. Eng. Chem. Res., 50(7): 4177-4182.
    Direct Link
  20. Koca, N., L.E. Rodriguez-Saona, W.J. Harper and V.B. Alvarez, 2007. Application of Fourier transform infrared spectroscopy for monitoring short-chain free fatty acids in Swiss cheese. J. Dairy Sci., 90(8): 3596-3603.
    Direct Link
  21. Kwon, B., N. Park and J. Cho, 2005. Effect of algae on fouling and efficiency of UF membranes. Desalination, 179(1-3): 203-214.
    Direct Link
  22. Lam, M.K. and K.T. Lee, 2010. Accelerating transesterification reaction with biodiesel as co-solvent: A case study for solid acid sulfated tin oxide catalyst. Fuel, 89(12): 3866-3870.
    Direct Link
  23. Lardon, L., A. Hélias, B. Sialve, 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol., 43(17): 6475 6481.
    CrossRef    PMid:19764204    
  24. Lee, J.Y., C. Yoo, S.Y. Jun, C.Y. Ahn and H.M. Oh, 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technol., 101(1): S75-S77.
    Direct Link
  25. Lohman, E.J., R.D. Gardner, L. Halverson, R.E. Macur, B.M. Peyton and R. Gerlach, 2013. An efficient and scalable extraction and quantification method for algal derived biofuel. J. Microbiol. Meth., 94(3): 235-244.
    Direct Link
  26. Luque de Castro, M.D. and L.E. García-Ayuso, 1998. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal. Chim. Acta, 369(1-2): 1-10.
    Direct Link
  27. Macías-Sánchez, M.D., C. Mantell, M. Rodríguez, E.M. De La Ossa, L.M. Lubián and O. Montero, 2009. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta, 77(3): 948-952.
    Direct Link
  28. Miglio, R., S. Palmery, M. Salvalaggio, L. Carnelli, F. Capuano and R. Borrelli, 2013. Microalgae triacylglycerols content by FT-IR spectroscopy. J. Appl. Phycol., 25(6): 1621-1631.
    Direct Link
  29. Mishra, T., P. Kushwah, K. Dholiya and V. Kothari, 2013. Effect of low power microwave radiation on microorganisms and other life forms. Adv. Microwave Wirel. Technol., 1(1): 4-11.
    CrossRef    
  30. Muthu, A., A. Agarwal, M.C. Arya and Z. Ahmed, 2011. Microalgae: A renewable source for second generation biofuels. Curr. Sci., 100(8): 1141-1142.
  31. Prieto, L.E.G., P.A. Sorichetti and S.D. Romano, 2008. Electric properties of biodiesel in the range from 20 Hz to 20 MHz. Comparison with diesel fossil fuel. Int. J. Hydrogen Energ., 33(13): 3531-3537.
    Direct Link
  32. Raman, S. and A. Mohr, 2014. Biofuels and the role of space in sustainable innovation journeys. J. Clean. Prod., 65: 224-233.
    Direct Link
  33. Ranjith Kumar, R., P. Hanumantha Rao and M. Arumugam, 2015. Lipid extraction methods from microalgae: A comprehensive review. Front. Energ. Res., 2(61): 1-9.
    Direct Link
  34. Reddy, H.K., T. Muppaneni, J. Rastegary, S.A. Shirazi, A. Ghassemi et al., 2013. ASI: Hydrothermal extraction and characterization of bio-crude oils from wet Chlorella sorokiniana and Dunaliella tertiolecta. Environ. Prog. Sust. Energ., 32(4): 910-915.
    Direct Link
  35. Reddy, H.K., T. Muppaneni, P.D. Patil, S. Ponnusamy, P. Cooke et al., 2014. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel, 115: 720-726.
    Direct Link
  36. Saifuddin, N., K. Aisswarya, Y.P. Juan and P. Priatharsini, 2015. Sequestration of high carbon dioxide concentration for induction of lipids in microalgae for biodiesel production. J. Appl. Sci., 15(8): 1045-1058.
    Direct Link
  37. Salehpour, S., M.A. Dubé and M. Murphy, 2009. Solution polymerization of styrene using biodiesel as a solvent: Effect of biodiesel feedstock. Can. J. Chem. Eng., 87(1): 129-135.
    Direct Link
  38. Samorì, C., C. Torri, G. Samorì, D. Fabbri, P. Galletti et al., 2010. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresource Technol., 101(9): 3274-3279.
    Direct Link
  39. Sorichetti, P.A. and S.D. Romano, 2005. Physico-chemical and electrical properties for the production and characterization of biodiesel. Phys. Chem. Liq., 43(1): 37-48.
    Direct Link
  40. Spear, S.K., ST. Griffin, K.S. Granger, J.G. Huddleston and R.D. Rogers, 2007. Renewable plant-based soybean oil methyl esters as alternatives to organic solvents. Green Chem., 9: 1008-1015.
    Direct Link
  41. Tang, D., W. Han, P. Li, X. Miao and J. Zhong, 2011. CO2 Biofixation and Fatty Acid Composition of Scenedesmus obliquus and Chlorella pyrenoidosa in Response to Different CO2 Levels. Bioresource Technol., 102(3): 3071-3076.
    Direct Link
  42. Toor, S.S., H. Reddy, S.G. Deng, J. Hoffmann, D. Spangsmark et al., 2013. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions. Bioresource Technol., 131: 413-419.
    Direct Link
  43. Tsubaki, S., K. Oono, A. Onda, K. Yanagisawa and J. Azuma, 2012. Microwave-assisted hydrothermal hydrolysis of cellobiose and effects of additions of halide salts. Bioresource Technol., 123: 703-706.
    Direct Link
  44. Virot, M., V. Tomao, C. Ginies, F. Visinoni and F. Chemat, 2008. Microwave-integrated extraction of total fats and oils. J. Chromatogr. A, 1196-1197: 57-64.
    Direct Link

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved