Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Photovoltaic Facade in Malaysia: The Development and Current Issues

Azhar Ghazali, Elias Salleh, Lim Chin Haw, Kamaruzzaman Sopian and Sohif Mat
Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Research Journal of Applied Sciences, Engineering and Technology  2016  8:652-663
http://dx.doi.org/10.19026/rjaset.13.3051  |  © The Author(s) 2016
Received: May ‎13, ‎2016  |  Accepted: June ‎25, ‎2016  |  Published: October 15, 2016

Abstract

The aim of this study is to review the current development of photovoltaic façade technology and assess the potential, issues and future regarding photovoltaic installation on vertical building façade in Malaysia with a focus on architectural aspect. Photovoltaic solar energy has become dominant and commercially available among the various renewable energy sources in Malaysia. It is now progressively developed and has become more reliable with significant potential for long-term growth. The application of photovoltaic technology should be broadened to maximize the limitless availability of solar radiation, especially in the tropical region. Past research from other countries has shown that PV vertical façade has great potential to generate electricity. Although the photovoltaic façade application in tropical urban areas can be a difficult challenge in Malaysia, with appropriate design and implementation it can create a new architectural tool in the Malaysian built environment and open up new possibilities in renewable energy’s future.

Keywords:

Building integrated photovoltaic , photovoltaic fa, renewable energy, urban area,


References

  1. Asia Pacific Energy Research Centre (APERC), 2006. APEC Energy Demand and Supply Outlook: Projection to 2030 Economy Review. Institute of Energy Economics, Japan.
    Direct Link
  2. Bahaj, A.B.S., P.A.B. James and M.F. Jentsch, 2008. Potential of emerging glazing technologies for highly glazed buildings in hot arid climates. Energ. Buildings, 40(5): 720-731.
    Direct Link
  3. Barker, M., T. Blewwett-Silcock, K. Eising, M. Gutschner, E. Kjellsson et al., 2001. Solar Electricity Guide. European Commission. Institute Cerda, Spain.
  4. Braun, P. and R. Rüther, 2010. The role of grid-connected, building-integrated photovoltaic generation in commercial building energy and power loads in a warm and sunny climate. Energ. Convers. Manage., 51(12): 2457-2466.
    Direct Link
  5. Brinkworth, B.J., B.M. Cross, R.H. Marshall and H. Yang, 1997. Thermal regulation of photovoltaic cladding. Sol. Energy, 61(3): 169-178.
    Direct Link
  6. Chan, S.A., 2009. Code of practice for energy efficiency and use of renewable energy for non-residential buildings. Pertubuhan Arkitek Malaysia, CPD Seminar, February 14, 2009.
  7. Chow, T.T., C. Li and Z. Lin, 2010. Innovative solar windows for cooling-demand climate. Sol. Energ. Mat. Sol. C., 94(2): 212-220.
    Direct Link
  8. Chow, T.T., Z. Qiu and C. Li, 2009. Potential application of "see-through" solar cells in ventilated glazing in Hong Kong. Sol. Energ. Mat. Sol. C., 93(2): 230-238.
    Direct Link
  9. Close, J., 1996. The integration of photovoltaics within high rise buildings in the dense urban environments of SE Asia, consideration of legislation to promote it and to maintain solar energy access. Renew. Energ., 8(1-4): 471-474.
    Direct Link
  10. Compagnon, R., 2004. Solar and daylight availability in the urban fabric. Energ. Buildings, 36(4): 321-328.
    Direct Link
  11. De Boer, B.J. and W.G.J. van Helden, 2001. PV MOBI-PV modules optimized for building integration. Proceeding of the 9th International Conference on Solar Energy in High Latitudes. Northsun, May 6-8, 2001.
    Direct Link
  12. Fung, T.Y.Y. and H. Yang, 2008. Study on thermal performance of semi-transparent building-integrated photovoltaic glazings. Energ. Buildings, 40(3): 341-350.
    Direct Link
  13. Gaillard, L., S. Giroux-Julien, C. Ménézo and H. Pabiou, 2014. Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Sol. Energy, 103: 223-241.
    Direct Link
  14. Gan, G. and S.B. Riffat, 2004. CFD modelling of air flow and thermal performance of an atrium integrated with photovoltaics. Build. Environ., 39(7): 735-748.
    Direct Link
  15. Han, J., L. Lu and H. Yang, 2009. Thermal behavior of a novel type see-through glazing system with integrated PV cells. Build. Environ., 44(10): 2129-2136.
    Direct Link
  16. Han, J., L. Lu, J. Peng and H. Yang, 2013. Performance of ventilated double-sided PV facade compared with conventional clear glass façade. Energ. Buildings, 56: 204-209.
    Direct Link
  17. Hsieh, C.M., Y.A. Chen, H. Tan and P.F. Lo, 2013. Potential for installing photovoltaic systems on vertical and horizontal building surfaces in urban areas. Sol. Energy, 93: 312-321.
    Direct Link
  18. Hwang, T., S. Kang and J.T. Kim, 2012. Optimization of the building integrated photovoltaic system in office buildings—Focus on the orientation, inclined angle and installed area. Energ. Buildings, 46: 92-104.
    Direct Link
  19. Infield, D., L. Mei and U. Eicker, 2004. Thermal performance estimation for ventilated PV facades. Sol. Energy, 76(1-3): 93-98.
    Direct Link
  20. Irshad, K., K. Habib and N. Thirumalaiswamy, 2014. Energy and cost analysis of photo voltaic trombe wall system in tropical climate. Energ. Proc., 50: 71-78.
    Direct Link
  21. Kapsis, K. and A.K. Athienitis, 2015. A study of the potential benefits of semi-transparent photovoltaics in commercial buildings. Sol. Energy, 115: 120-132.
    Direct Link
  22. Khai, N.P., N. Mitharatne and S. Wittkopf, 2012. Semi-transparent building-integrated photovoltaic windows: Potential energy savings of office buildings in tropical Singapore. Proceeding of the 28th International PLEA Conference on Sustainable Architecture+Urban Design: Opportunities, Limits and Needs-Towards an Environmentally Responsible Architecture, PLEA 2012.
    Direct Link
  23. Koyunbaba, B.K. and Z. Yilmaz, 2012. The comparison of Trombe wall systems with single glass, double glass and PV panels. Renewable Energ., 45: 111-118.
    Direct Link
  24. Lau, K.L., E. Ng and Z.J. He, 2011. Residents' preference of solar access in high-density sub-tropical cities. Sol. Energy, 85(9): 1878-1890.
    Direct Link
  25. Levinson, R., H. Akbari, M. Pomerantz and S. Gupta, 2009. Solar access of residential rooftops in four California cities. Sol. Energy, 83(12): 2120-2135.
    Direct Link
  26. Li, D.H.W., T.N.T. Lam, W.W.H. Chan and A.H.I. Mak, 2009. Energy and cost analysis of semi-transparent photovoltaic in office buildings. Appl. Energ., 86(5): 722-729.
    Direct Link
  27. Liao, W. and S. Xu, 2015. Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China. Energy, 83: 267-275.
    Direct Link
  28. Ling, C.S., M.H. Ahmad and D.R. Ossen, 2007. The effect of geometric shape and building orientation on minimising solar insolation on high-rise buildings in hot humid climate. J. Construct. Dev. Countries, 12(1).
    Direct Link
  29. Lobaccaro, G. and F. Frontini, 2014. Solar energy in urban environment: How urban densification affects existing buildings. Energ. Proc., 48: 1559-1569.
    Direct Link
  30. López, C.S.P. and M. Sangiorgi, 2014. Comparison assessment of BIPV façade semi-transparent modules: Further insights on human comfort conditions. Energ. Proc., 48: 1419-1428.
    Direct Link
  31. López, C.S.P., F. Frontini, G. Friesen and T. Friesen, 2014. Experimental testing under real conditions of different solar building skins when using multifunctional BIPV systems. Energ. Proc., 48: 1412-1418.
    Direct Link
  32. MBIPV Project, 2006. Compared Assessment of Selected Environmental Indicators of Photovoltaic Electricity in Selected OECD Cities and Malaysian Cities. MBIPV Project, Malaysia.
    Direct Link
  33. Miyazaki, T., A. Akisawa and T. Kashiwagi, 2005. Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renew. Energ., 30(3): 281-304.
  34. Ng, P.K. and N. Mithraratne, 2014. Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics. Renew. Sust. Energ. Rev., 31: 736-745.
  35. Oh, T.H., S.Y. Pang and S.C. Chua, 2010. Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth. Renew. Sust. Energ. Rev., 14(4): 1241-1252.
  36. Olivieri, L., E. Caama-o-Martín, F.J. Moralejo- Vázquez, N. Martín-Chivelet, F. Olivieri and F.J. Neila-Gonzalez, 2014b. Energy saving potential of semi-transparent photovoltaic elements for building integration. Energy, 76: 572-583.
  37. Olivieri, L., E. Caama-o-Martin, F. Olivieri and J. Neila, 2014a. Integral energy performance characterization of semi-transparent photovoltaic elements for building integration under real operation conditions. Energ. Buildings, 68: 280-291.
  38. Park, K.E., G.H. Kang, H.I. Kim, G.J. Yu and J.T. Kim, 2010. Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy, 35(6): 2681-2687.
    CrossRef    Direct Link
  39. Peng, C., Y. Huang and Z. Wu, 2011. Building-integrated photovoltaics (BIPV) in architectural design in China. Energ. Buildings, 43(12): 3592-3598.
  40. Peng, J., L. Lu, H. Yang and J. Han, 2013. Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade. Appl. Energ., 112: 646-656.
  41. Quaschning, V. and R. Hanitsch, 1998. Irradiance calculation on shaded surfaces. Sol. Energy, 62(5): 369-375.
    CrossRef    Direct Link
  42. Quesada, G., D. Rousse, Y. Dutil, M. Badache and S. Hallé, 2012a. A comprehensive review of solar facades. Opaque solar facades. Renew. Sust. Energ. Rev., 16(5): 2820-2832.
  43. Quesada, G., D. Rousse, Y. Dutil, M. Badache and S. Hallé, 2012b. A comprehensive review of solar façades. Transparent and translucent solar facades. Renew. Sust. Energ. Rev., 16(5): 2643-2651.
  44. Qui, Z., T. Chow, P. Li, C. Li, J. Ren and W. Wang, 2009. Performance evaluation of the photovoltaic double-skin facade. Proceeding of the 11th International IBPSA Conference 2009. Glasgow, Scotland.
  45. Radhi, H., 2010. Energy analysis of façade-integrated photovoltaic systems applied to UAE commercial buildings. Sol. Energy, 84(12): 2009-2021.
    CrossRef    Direct Link
  46. Rao, S.P., R. Bayudi, N. Inangda and C.W. Lim, 2003. Building integrated photovoltaic under the Malaysian climate. Proceeding of Seminar Penyelidikan Jangka Pendek 2003. 11-12 Mac 2003, Universiti Malaya.
  47. Redweik, P., C. Catita and M. Brito, 2013. Solar energy potential on roofs and facades in an urban landscape. Sol. Energy, 97: 332-341.
    CrossRef    Direct Link
  48. Saidur, R., 2009. Energy consumption, energy savings, and emission analysis in Malaysian office buildings. Energ. Policy, 37(10): 4104-4113.
  49. Saidur, R., N.A. Rahim, H.W. Ping, M.I. Jahirul, S. Mekhilef and H.H. Masjuki, 2009. Energy and emission analysis for industrial motors in Malaysia. Energ. Policy, 37(9): 3650-3658.
  50. Sharan, M.A., 2008. Efficiency enhancement of stationary solar energy based power conversion systems in Canada. Appl. Energ., 86(9): 1405-1409.
  51. Song, J.H., Y.S. An, S.G. Kim, S.J. Lee, J.H. Yoon and Y.K. Choung, 2008. Power output analysis of transparent thin-film module in building integrated photovoltaic system (BIPV). Energ. Buildings, 40(11): 2067-2075.
  52. Wah, W.P., Y. Shimoda, M. Nonako, M. Inoue and M. Mizuno, 2005. Field study and modeling of semi-transparent PV in power, thermal and optical aspects. J. Asian Archit. Build., 4(2): 549-556.
    CrossRef    Direct Link
  53. Wahlgren, P. and E. Sikander, 2010. Methods and Materials for Airtight Buildings. ASHARE 2010.
    Direct Link
  54. Wong, P.W., Y. Shimoda, M. Nonaka, M. Inoue and M. Mizuno, 2008. Semi-transparent PV: Thermal performance, power generation, daylight modelling and energy saving potential in a residential application. Renew. Energ., 33(5): 1024-1036.
  55. Woyte, A., J. Nijs and R. Belmans, 2003. Partial shadowing of photovoltaic arrays with different system configurations: Literature review and field test results. Sol. Energy, 74(3): 217-233.
    CrossRef    Direct Link
  56. Yang, H., J. Burnett and J. Ji, 2000. Simple approach to cooling load component calculation through PV walls. Energ. Buildings, 31(3): 285-290.
  57. Yun, G.Y. and K. Steemers, 2009. Implications of urban settings for the design of photovoltaic and conventional facades. Sol. Energy, 83(1): 69-80.
    CrossRef    Direct Link
  58. Yun, G.Y., M. McEvoy and K. Steemers, 2007. Design and overall energy performance of a ventilated photovoltaic façade. Sol. Energy, 81(3): 383-394.
    CrossRef    Direct Link

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved