Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Troubleshooting a Full-scale Wastewater Treatment Plant for Biological Nutrient Removal

1Oleyiblo Oloche James, 2Jia-Shun Cao and 1Xiao-Guang Lu
1College of Environment
2National Engineering Research Center of Water Resource Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
Research Journal of Applied Sciences, Engineering and Technology  2014  4:745-753
http://dx.doi.org/10.19026/rjaset.7.312  |  © The Author(s) 2014
Received: March 27, 2013  |  Accepted: April 22, 2013  |  Published: January 27, 2014

Abstract

The International Association of Water Quality (IAWQ) Activated Sludge Model No.2 (ASM2) was applied to troubleshoot an existing underperforming full-scale wastewater treatment plant (WWTP) built for biological nutrient removal. The WWTP is operated in a 3-stage pho-redox process configuration (A2O). This study was undertaken with the aim of finding optimal operating conditions that will meet TP and TN concentration requirements in the effluent of the WWTP under study without the use of either chemical or external carbon sources and also to verify the applicability, capability and predictability of ASM2 as implemented in STOAT software. ASM2 was successfully used to troubleshoot bottle neck areas and to define the operational schedule for optimal performance of the wastewater treatment plant. Consequently, the costs of chemical and external carbon sources were eliminated and the effect of residual chemicals on the environment reduced.

Keywords:

Biological nutrient removal, IAWQ_ASM2, optimal performance, troubleshoot, wastewater treatment,


References

  1. APHA, American Water Works Association and Water Environment Federation, 1995. Standard Methods for the Examination of Water and Wastewater. 19th Edn., American Public Health Association, Washington, DC.
  2. Barker, P.S. and P.L. Dold, 1995. COD and nitrogen balances in activated sludge systems. Water Res., 29(2): 633-643.
    CrossRef    
  3. Barnard, J.L., 1973. Biological denitrification. J. Water Pollut. Control, 72(6): 705-720.
  4. Barnard, J.L., 1975. Nutrient removal in biological systems. J. Water Pollut. Control, 74: 143-154.
  5. Barnard, J.L., 1983. Background to biological phosphorus removal. Water Sci. Technol., 15: 1-13.
  6. Cinar, O., G.T. Daigger and S.P. Graef, 1998. Evaluation of IAWQ activated sludge model No. 2 using steady-state data from four full-scale wastewater treatment plants. Water Environ. Res., 70(6): 1216-1224.
    CrossRef    
  7. Ekama, G.A. and M.C. Wentzel, 1999. Difficulties and developments in biological nutrient removal technology and modeling: Activated sludge model No. 3. Water Sci. Technol., 39: 183-193.
  8. EPA, 2010. Nutrient control design manual state of technology review. Report by Cadmus Group, Inc., (Cadmus) under EPA Contract, August, 2010, Office of Research and Development/National Risk Management Research Laboratory, EPA/600/R-10/100|August 2010, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.
  9. Grady, C.P.L., G.T. Daigger and H.C. Lim, 1998. Biological Wastewater Treatment: Theory and Applications. 2nd Edn., Marcel Dekker Inc., New York.
  10. Gujer, W., M. Henze, T. Mino, T. Matsuo, M.C. Wentzel and G.V.R. Marais, 1995. The activated sludge model No. 2: Biological phosphorus removal. Water Sci. Technol., 31: 1-11.
  11. Henze, M., C.P.L. Jr. Grady, W. Gujer, G.V.R. Marais and T. Matsuo, 1986. Activated sludge model no. 1. IAWPRC Scientific and Technical Report No. 1, IAWPRC, London, UK.
  12. Henze, M., C.P.L. Grady, W. Gujer, G.V.R. Marais and T. Matsuo, 1987. General model for single-sludge wastewater treatment system. Water Res., 21: 505-515.
    CrossRef    
  13. Henze, M., W. Gujer, T. Mino, T. Matsuo, M.C.M. Wentzel and G.V.R. Marais, 1995. Activated sludge model No. 2. IWA Scientific and Technical Report No. 3, London, UK.
  14. Henze, M., W. Gujer, T. Mino, T. Matsuo, M.C. Wentzel and C.V.R. Marais, 1999. Activated sludge model no. 2d. Water Sci. Technol., 39: 165-182.
  15. Henze, M., W. Gujer, T. Mino, T. Matsuo and M.V. Loosdrech, 2000. Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No. 9, London, UK.
  16. Hulsbeek, J.J.W., J. Kruit, P.J. Roeleveld and M.C.M. van Loosdrecht, 2002. A practical protocol for dynamic modelling of activated sludge systems. Water Sci. Technol., 45: 127-136.
    PMid:11989865    
  17. Kappeler, J. and W. Gujer, 1992. Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modeling. Water Sci. Technol., 25(6): 125-139.
  18. Krist, V., M. Gernaey, C.M. van Loosdrecht, H. Mogens, L. Morten, B.J. Sten, 2004. Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environ. Model Software, 19: 763-783.
    CrossRef    
  19. Liwarska-Bizukojc, E. and R. Biernacki, 2010. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresour. Technol., 101: 7278-7285.
    CrossRef    PMid:20478704    
  20. Meijer, S.C.F., M.C.M. van Loosdrecht and J.J. Heijnen, 2001. Metabolic modelling of full-scale biological nitrogen and phosphorus removing WWTP's. Water Res., 35: 2711-2723.
    CrossRef    
  21. Meinholt, J., C.D.M. Filipe, G.D. Daigger and S. Isaacs, 1999. Characterization of the denitrifying fraction of phosphate accumulating organism in biological phosphate removal. Water Sci. Technol., 39(1): 31-42.
  22. Melcer, H., P.L. Dold, R.M. Jones, C.M. Bye, I. Takacs, H.D. Stensel, A.W. Wilson, P. Sun and S. Bury, 2003. Methods for wastewater characterization in activated sludge modelling. Water Environment Research Foundation (WERF), Alexandria, VA, USA.
    PMid:12668100    
  23. Mino, T., M.C.M. van Loosdrecht and J.J. Heijnen, 1998. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res., 32: 3193-3207.
    CrossRef    
  24. Mino, T., W.T. Liu, F. Kurisu and T. Matsuo, 1995. Modeling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci. Technol., 31(2): 25-34.
  25. Muschalla, D., M. Schutze, K. Schroeder, M. Bach, F. Blumensaat, K. Klepiszewski, M. Pabst, A. Pressl, N. Schindler, J. Wiese and G. Gruber, 2008. The HSG guideline document for modelling integrated urban wastewater systems. Proceeding of the 11th International Conference on Urban Drainage. Edinburgh, Scotland, UK.
    PMid:18520011    
  26. Peterson, B., K. Gernaey, M. Henze and P.A. Vanrolleghem, 2002. Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant. J. Hydroinform., 4: 15-38.
  27. Power, M., 1993. The predictive validation of ecological and environmental. Models Ecol. Modell., 68: 33-50.
    CrossRef    
  28. Randall, C.W., J.L. Barnard and H.D. Stensel, 1992. Design and Retrofit Wastewater of Treatment Plants for Biological Nutrient Removal. Technomic Publication Co., Lancaster, PA.
  29. Sedlak, R.I., 1991. Phosphorus and Nitrogen Removal from Municipal Wastewater: Principles and Practice. Lewis Publishers, Chelsea, MI.
  30. Sin, G., D.J.W. De Pauw, S. Weijers and P.A. Vanrolleghem, 2008. An efficient approach to automate the manual trial and error calibration of activated sludge models. Biotechnol. Bioeng., 100(3): 516-28.
    CrossRef    PMid:18098316    
  31. Smith, M. and J. Dudley, 1998. Dynamic process modelling of activated-sludge plant. Water Environ. Res., 12: 346-365.
    CrossRef    
  32. Smolders, G.J.F., J. van der Meij, M.C.M. Van Loosdrecht and J.J. Heijnen, 1994. Kinetic of the anaerobic and aerobic metabolism. Ph.D. Thesis, Tech. University, Def, Neth.
  33. Smolders, G.J.F., J.M. Klop, M.C.M. van Loosdrecht and J.J. Heijnen, 1995. Metabolic model of the biological phosphorus removal process: I. Effect of sludge retention time. Biotechnol. Bioeng., 48: 222-233.
    CrossRef    PMid:18623482    
  34. STOWA, 1996. Methods for influent characterization, inventory and guidelines. Report STOWA 96-08, Utrecht, the Netherlands. (In Dutch)
  35. Strotmann, U.J., A. Geldern, A. Kuhn, C. Gendig and S. Klein, 1999. Evaluation of a respirometric test method to determine the heterotrophic yield coefficient of activated sludge bacteria. Chemosphere, 38(15): 3555-3570.
    CrossRef    
  36. Urban Wastewater Treatment Directive, 1991. Directive 91/271/EEC of the council of the European communities of 21 May 1991 concerning urban waste water treatment. The Official Journal of the European Communities, L135/30.5.1991, Brussels.
  37. U.S. EPA, 1993. Manual Nitrogen Control. Tech. Report No. EPA 625/R-93/010. U.S. EPA, Washington DC, USA.
  38. Van Loosdrecht, M.C.M., G.J. Smolders, Y. Kuba and J.J. Heijnen, 1997. Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater-use of dynamic enrichments cultures. Anton. Leeuw. Int. J. G., 71: 109-116.
    CrossRef    
  39. Vanrolleghem, P.A., G. Insel, D. De Pauw, I. Nopens, S. Weijers and K.A. Gernaey, 2003. Comprehensive model calibration procedure for activated sludge models. Proceedings of 76th Annual Technical Exhibition and Conference. WEFTEC 2003. Los Angeles, CA, USA, October 11-15, 2003.
    CrossRef    
  40. Van Veldhuizen, H.M., M.C.M. van Loosdrecht and J.J. Heijnen, 1999. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process. Water Res., 33: 3459-3468.
    CrossRef    
  41. WEF (Water Environment Federation), 2010. Nutrient Removal. Manual of Practice No. 34. Alexandra, VA.
  42. Wentzel, M.C., P. Dold, G.A. Ekama and G.V.R. Marais, 1985. Kinetics of biological phosphorus release. Water Sci. Technol., 17: 51-71.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved