Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


DTC-SVM Based on PI Torque and PI Flux Controllers to Achieve High Performance of Induction Motor

1Hassan Farhan Rashag, 2Nadia M.L. Tan, 1S.P. Koh, 3Ahmed N. Abdalla, 1K.H. Chong and 1S.K. Tiong
1Department of Electronics and Communication Engineering
2Department of Electrical Power Engineering, Universiti Tenaga Nasional, Selangor, 43000, Malaysia
3Faculty of Electrical and Electronic Eng., University Malaysia Pehang, Pekan 26600, Malaysia
Research Journal of Applied Sciences, Engineering and Technology  2014  4:875-891
http://dx.doi.org/10.19026/rjaset.7.330  |  © The Author(s) 2014
Received: May 25, 2013  |  Accepted: June 18, 2013  |  Published: January 27, 2014

Abstract

The fundamental idea of direct torque control of induction machines is investigated in order to emphasize the property produced by a given voltage vector on stator flux and torque variations. The proposed control system is based on Space Vector Modulation (SVM) of electrical machines, Improvement model reference adaptive system, real time of stator resistance and estimation of stator flux. The purpose of this control is to minimize electromagnetic torque and flux ripple and minimizing distortion of stator current. In this proposed method, PI torque and PI flux controller are designed to achieve estimated torque and flux with good tracking and fast response with reference torque and there is no steady state error. In addition, design of PI torque and PI flux controller are used to optimize voltages in d-q reference frame that applied to SVM. The simulation Results of proposed DTC-SVM have complete excellent performance in steady and transient states as compared with classical DTC-SVM.

Keywords:

Direct torque control, induction motor, PI controller, space vector modulation,


References

  1. Abdelli, R., D. Rekioua and T. Rekioua, 2011. Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque. ISA Trans., 50(2): 213-219.
    CrossRef    PMid:21193193    
  2. Aleksandar, N. and J. Borislav, 2008. Different methods for direct torque control of induction motor fed from current source inverter. J. WSEAS Trans. Circuits Syst., 7(7): 738-748.
  3. Ambrozic, V., G.S. Buja and R. Menis, 2004. Band-constrained technique for direct torque control of induction motor. IEEE T. Ind. Electron., 51(4): 776-784.
    CrossRef    
  4. Beerten, J., J. Verveckken and J. Driesen, 2010. Predictive direct torque control for flux and torque ripple reduction. IEEE T. Ind. Electron., 57(1): 404-412.
    CrossRef    
  5. Bertoluzzo, M., G.S. Buja and R. Menis, 2005. An assessment of the inverter switching characteristics in DTC induction motor drives. IEEE T. Power Electr., 20(2): 457-465.
    CrossRef    
  6. Bertoluzzo, M., G. Buja and R. Menis, 2006. Direct torque control of an induction motor using a single current sensor. IEEE T. Ind. Electron., 53(3): 778-784.
    CrossRef    
  7. Bo, L., G. Gui-Fang, H. Xiao-Hong and L. Xiao-Ning, 2009. Novel torque ripple minimization algorithm for direct torque control of induction motor drive. J. Shanghai Univ., 13(2): 155-163.
    CrossRef    
  8. Escobar, G., A.M. Stankovic, E. Galvan, J.M. Carrasco and R. Ortega, 2003. A family of switching control strategies for the reduction of torque ripple in DTC. IEEE T. Contr. Syst. T., 11(6): 933-939.
    CrossRef    
  9. Esref, E.O., G. Metin and B. Seta, 2010. Simultaneous rotor and stator resistance estimation of squirrel cage induction machine with a single extended Kalman filter. Turk J. Electr. Eng. Comput. Sci., 18(5): 853-863.
  10. Hechmi, B.A., J. Mohamed, B. Mohamed and G. Moncef, 2011. High performance sensorless speed vector control of SPIM drives with on-line stator resistance estimation. J. Simul. Model. Pract. Theory, 19(1): 271-282.
    CrossRef    
  11. Jian, L., Y. Geng, H. Wang and X. Wenli, 2005. Implementation of direct torque control scheme for induction machines with variable structure controllers. Tsinghua Sci. Technol., 10(5): 593-597.
    CrossRef    
  12. Kaboli, S., E. Vahdati-Khajeh and M.R. Zolghadri, 2006. Probabilistic voltage harmonic analysis of direct torque controlled induction motor drives. IEEE T. Power Electr., 21(4): 1041-1052.
    CrossRef    
  13. Kuo-Kai, S., L. Juu-Kuh, P. Van-Truong, Y. Ming-Ji and W. Te-Wei, 2010. Global minimum torque ripple design for direct torque control of induction motor drives. IEEE T. Ind. Electron., 57(9): 3148-3156.
    CrossRef    
  14. Kyo-Beum, L. and F. Blaabjerg, 2007. An improved DTC-SVM method for sensorless matrix converter drives using an over modulation strategy and a simple nonlinearity compensation. IEEE T. Ind. Electron., 54(6): 3155-3166.
    CrossRef    
  15. Lascu, C., I. Boldea and F. Blaabjerg, 2004. Direct torque control of sensorless induction motor drives: a sliding-mode approach. IEEE T. Ind. Appl., 40(2): 582-590.
    CrossRef    
  16. Mabrouk, J., J. Kamel, K. Yassine and B. Mohamed, 2012. Luenberger state observer for speed sensorless ISFOC induction motor drives. J. Electr. Power Syst. Res., 89: 139-147.
    CrossRef    
  17. Mohammad, V.K., S.Y. Ahmad and M.K. Hossein, 2010. Direct power control of DFIG based on discrete space vector modulation. J. Renew. Energ., 35(5): 1033-1042.
    CrossRef    
  18. Monmasson, E. and J. Louis, 2003. Presentation of a control law for IM drive based on the dynamic reconfiguration of a DTC algorithm and a SVM-DTC algorithm. Math. Comput. Simul., 63(3): 321-333.
    CrossRef    
  19. Murat, B., B. Seta and G. Metin, 2007. Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs. J. Energ. Convers. Manag., 48(12): 3120-3134.
    CrossRef    
  20. Panneer Selvam, N., M. Arul Prasanna, I. Gerald, C. Raj and Dr. V. Rajasekaran, 2012. A Novel direct torque controlled IM drives fed from CSI with minimum ripple torque. Int. J. Eng. Trends Technol., 3(4): 507-511.
  21. Patel, C., R.P.P.A. Day, A. Dey, R. Ramchand, K.K. Gopakumar and M.P. Kazmierkowski, 2012. Fast direct torque control of an open-end induction motor drive using 12-sided polygonal voltage space vectors. IEEE T. Power Electr., 27(1): 400-410.
    CrossRef    
  22. Raja, S.T. and N.S. Bayindi, 2003. Speed estimation of an induction motor using Elman neural network. J. Neurocomput., 55(3-4): 727-730.
    CrossRef    
  23. Tripathi, A., A.M. Khambadkone and S.K. Panda, 2006. Dynamic control of torque in overmodulation and in the field weakening region. IEEE T. Power Electr., 21(4): 1091-1098.
    CrossRef    
  24. Vasudevan, M., R. Arumugam and S. Paramasivam, 2006. Development of torque and flux ripple minimization algorithm for direct torque control of induction motor drive. J. Electr. Eng., 89(1): 41-51.
    CrossRef    
  25. Yuksel, O. and D. Mehmet, 2011. Speed estimation of vector controlled squirrel cage asynchronous motor with artificial neural networks. J. Energ. Convers. Manag., 52(1) 675-686.
    CrossRef    
  26. Yuttana, K., P. Suttichai and A.T. Hamid, 2008. Modified direct torque control method for induction motor drives based on amplitude and angle control of stator flux. J. Electr. Pow. Syst. Res., 78(10): 1712-1718.
    CrossRef    
  27. Zhifeng, Z., T. Renyuan, B. Baodong and X. Dexin, 2010. Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors. IEEE T. Magn., 46(8): 3133-3136.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved