Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Frequency Response Function-based Structural Damage Identification using Artificial Neural Networks-a Review

S.J.S. Hakim and H. Abdul Razak
Department of Civil Engineering, Universiti of Malaya, Kuala Lumpur 50603, Malaysia
Research Journal of Applied Sciences, Engineering and Technology  2014  9:1750-1764
http://dx.doi.org/10.19026/rjaset.7.459  |  © The Author(s) 2014
Received: March 26, 2013  |  Accepted: April 29, 2013  |  Published: March 05, 2014

Abstract

This study presents and reviews the technical literature and previous studies for the past three decades on structural damage identification using ANNs and measured FRFs as inputs. Much of the previous studies have used modal parameters to ascertain the success of damage identification. However, significant information may not be properly represented through the application of modal parameters. With this in mind, the direct use of frequency domain data in terms of the Frequency Response Functions (FRFs) seems more appropriate. Recent studies indicate that ANNs can be trained on measured FRFs of healthy and damaged models of structure to assess the condition of the structure. According to this review, it is clear that there have been numerous studies which have gone on to apply the ANNs on FRF data of structures in the field of damage identification and it has been shown that ANNs using FRFs can provide several advantages over the modal parameters and damage identification has subsequently become much improved.

Keywords:

Artificial Neural Networks (ANNs), Back Propagation Neural Network (BPNN), damage identification, Frequency Response Functions (FRFs), Structural Health Monitoring (SHM),


References

  1. Abdul-Razak, H. and F.C. Choi, 2001. The Effect of corrosion on the natural frequency and modal damping of reinforced concrete beams. Eng. Struct., 23: 1126-1133.
    CrossRef    
  2. Adeli, H. and S. Hung, 1995. Machine Learning-neural Networks, Genetic Algorithms and Fuzzy Systems. John Wiley and Sons Ltd., New York.
  3. Ambrogio, W. and P.B. Zobel, 1994. Damage detection in truss structures using a direct updating technique. Proceedings of the 19th International Seminar for Modal Analysis, pp: 657-667.
  4. Bakhary, N., 2006. Vibration-based damage detection of slab structure using artificial neural network. Technol. J. Univ., Technol. Malaysia., 44(B): 17-30.
  5. Bakhary, N., H. Hao and A.J. Deeks, 2007. Damage detection using artificial neural network with consideration of uncertainties. Eng. Struct., 29: 2806-2815.
    CrossRef    
  6. Bolton, R., N. Stubbs, C. Sikorsky and S. Choi, 2001. A Comparison of modal properties derived from forced and output-only measurement for a reinforced concrete highway bridge. Proceedings of the IMAC-XIX: A Conference on Structural Dynamic, 1: 857-863.
  7. Chang, S.P., J. Lee and S. Kim, 2002. Damage Detection in Steel Bridge Using Artificial Neural Network and Signal Anomaly Index. In: Balageas, D.L. (Ed.), Structural Health Monitoring. DEStech Publications, Lancaster, PA, pp: 718-725.
    PMid:11870126    
  8. Chaudhry, Z. and A.J. Ganino, 1994. Damage detection using neural networks: An initial experimental study on de bonded beams. Intell. Mater. Syst. Struct., 5: 585.
    CrossRef    
  9. Clough, R.W. and J. Penzien, 1993. Dynamics of Structures. McGraw-Hill, USA.
  10. Cooley, J.W. and J.W. Tukey, 1965. An algorithm for the machine calculation of complex fourier series. Math. Comput., 19: 297-301.
    CrossRef    
  11. Dackermann, U., J. Li and B. Samali, 2010. Quantification of notch-type damage in a two-storey framed structure utilizing frequency response functions and artificial neural networks. Proceedings of the 5th World Conference on Structural Control and Monitoring, (5WCSCM). Tokyo, Japan.
  12. Dackermann, U., J. Li, B. Samali, F.C. Choi and C.K. Keith, 2011. Damage severity assessment of timber bridges using frequency response functions and artificial neural networks. Proceedings of the International Conference on Structural Health Assessment of Timber Structures (SHATIS'11). Lisbon, Portugal.
  13. Demuth, H., M. Beale and M. Hagan, 2005. Neural Network Toolbox User's Guide. Version 4.0.6, the Math Works Inc.
  14. Efstathiades, C.H., C.C. Baniotopoulos, P. Nazarko, L. Ziemianski and G.E. Stavroulakisc, 2007. Application of neural networks for the structural health monitoring in curtain-wall systems. Eng. Struct., 29: 3475-3484.
    CrossRef    
  15. Ewins, D.J., 2007. Modal Testing: Theory and Practice. Research Studies Press, Letchworth, U.K.
  16. Fang, J.Q. and G.Q. Jiao, 2007. Implementation of BP-network using frequency response function as networks input data. Comput. Simulat., 3(21-30).
  17. Fang, X., H. Luo and J. Tang, 2005. Structural damage detection using neural network with learning rate improvement. Comput. Struct., 83: 2150-2161.
    CrossRef    
  18. Folorunsho, J.O., E.O. Iguisi, M.B. Muazu and S. Garba, 2012. Development of an ANN-based model for forecasting river Kaduna discharge. Res. J. Appl. Sci. Eng. Technol., 4(21): 4284-4292.
  19. Fonseca, E.T. and P.G.S. Vellasco, 2003. A path load parametric analysis using neural networks. Construct. Steel Res., 59: 251-267.
    CrossRef    
  20. Hagan, M.T., H.B. Demuth and M.H. Beale, 1996. Neural Network Design. PWS Publishing Co., Boston, Massachusetts.
  21. Hakim, S.J.S. and H. Abdul Razak, 2011. Application of combined artificial neural networks and modal analysis for structural damage identification in bridge girder. Int. J. Phys. Sci., 6(35): 7991-8001.
  22. Hakim, S.J.S. and H. Abdul Razak, 2013a. Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification. Struct. Eng. Mech., 45(6): 779-802.
    CrossRef    
  23. Hakim, S.J.S. and H. Abdul Razak, 2013b. Structural damage detection of steel bridge girder using artificial neural networks and finite element models. Steel Compos. Struct., 4(14), (In Print).
  24. Hakim, S.J.S., J. Noorzaei, M.S. Jaafar, M. Jameel and M.H. Mohammad, 2011. Application of artificial neural networks to predict compressive strength of high strength concrete. Int. J. Phys. Sci., 6(5): 975-981.
    CrossRef    
  25. Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. 2nd Edn., Prentice Hall. Upper Saddle River, USA.
  26. Heidari, M.D., M. Omid and A. Akram, 2011. Application of artificial neural network for modeling benefit to cost ratio of broiler farms in tropical regions of Iran. Res. J. Appl. Sci. Eng. Technol., 3(6): 546-552.
  27. Imregun, M., W.J. Visser and D.J. Ewins, 1995. Finite element model updating using frequency response function data-I: Theory and initial investigation. Mech. Syst. Signal Process., 9: 187-202.
    CrossRef    
  28. Ismail, Z., H. Abdul Razak and A.G. Abdul Rahman, 2006. Determination of damage location in RC beams using mode shape derivatives. Eng. Struct., 28: 1566-1573.
    CrossRef    
  29. Kanwar, V., N. Kwatra and P. Aggarwal, 2007. Damage detection for framed RCC buildings using ANN modeling. Int. J. Damage Mech., 16: 457-472.
    CrossRef    
  30. Karimi, I., N. Khaji, M.T. Ahmadi and M. Mirzayee, 2010. System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element-boundary element approach. Eng. Struct., 32: 3583-3591.
    CrossRef    
  31. Kim, S., 2003. Experimental investigation of local damage detection on a 1/15 scale model of a suspension bridge deck. Eng. Struct., 7(4): 461-468.
    CrossRef    
  32. Kim, S. and J. Lee, 2000. Use of modal testing to identify damage on steel members. KSCE J. Civil Eng., 4(2): 75-82.
    CrossRef    
  33. Klenke, S.E. and T.L. Paez, 1996. Damage identification with probabilistic neural networks. Proceeding of the 14th International Modal Analysis Conference, pp: 99-104.
  34. Ko, J.M., X.T. Zhou and Y.Q. Ni, 2002. Seismic damage evaluation of a 38-storey building model using measured FRF data reduced via principal component analysis. Adv. Build. Technol., 2: 953-960.
    CrossRef    
  35. Kullaa, J., 2003. Damage detection of the Z24 bridge using control charts. Mech. Syst. Signal Process., 17(1): 163-170.
    CrossRef    
  36. Lam, H.F. and C.T. Ng, 2008. The selection of pattern features for structural damage detection using an extended Bayesian ANN algorithm. Eng. Struct., 30: 2762-2770.
    CrossRef    
  37. Lee, S.C., 2003. Prediction of concrete strength using artificial neural networks. Eng. Struct., 25: 849-857.
    CrossRef    
  38. Lee, J. and S. Kim, 2007. Structural damage detection in the frequency domain using neural networks. Intell. Mater. Syst. Struct., 18: 785.
    CrossRef    
  39. Lee, U. and J.A. Shin, 2002. Frequency response function-based structural damage identification method. Comput. Struct., 80(2): 117-132.
    CrossRef    
  40. Li, Y. and Y. Fang, 2012. T-S neural network model identification of ultra-supercritical units for superheater based on improved fcm. Res. J. Appl. Sci. Eng. Technol., 4(14): 2147-2152.
  41. Liu, P., S. Sana and V.S. Rao, 1999. Structural damage identification using time-domain parameter estimation techniques. Proceeding of the 2nd International Workshop on Structural Health Monitoring. Stanford University, USA, pp: 812-820.
  42. Loh, C.H. and C.C. Huang, 1999. Damage identification of multi-story steel frames using neural networks. Proceeding of the 2nd International Workshop on Structural Health Monitoring. Stanford University, USA, pp: 390-399.
  43. Lu, Y. and Z. Tu, 2004. A two-level neural network approach for dynamic FE model updating including damping. Sound Vib., 275: 931-952.
    CrossRef    
  44. Luo, H. and S. Hanagud, 1997. Dynamic learning rate neural networks training and composite structural damage detection. AIAA J., 35(9): 1522-1527.
    CrossRef    
  45. Lyon, R., 1995. Structural diagnostics using vibration transfer functions. Sound Vib., 29: 28-31.
  46. Manning, R., 1994. Damage detection in a adaptives structures using neural networks. Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp: 160-172.
    CrossRef    
  47. Marwala, T., 2000. Damage identification using committee of neural network. Eng. Mech., 126(1): 43-50.
    CrossRef    
  48. Marwala, T. and H.E.M. Hunt, 1999. Fault identification using finite element models and neural networks. Mech. Syst. Signal Process., 13(3): 475-490.
    CrossRef    
  49. Mashrei, M.A., N. Abdulrazzaq, T.Y. Abdalla and M.S. Rahman, 2010. Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members. Eng. Struct., 32: 1723-1734.
    CrossRef    
  50. Mata, J., 2011. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Eng. Struct., 33: 903-910.
    CrossRef    
  51. Ni, Y.Q., X.T. Zhou and J.M. Ko, 2006. Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks. Sound Vib., 290(1-2): 242-263.
    CrossRef    
  52. Noorzaei, J., S.J.S. Hakim, M.S. Jaafar, A.A.A. Abang and A.M.T. Waleed, 2007. An optimal architecture of artificial neural network for predicting of compressive strength of concrete. Indian Concrete J., 81(8): 17-24.
  53. Obodeh, O. and C.I. Ajuwa, 2009. Evaluation of artificial neural network performance in predicting diesel engine nox emissions. Res. J. Appl. Sci. Eng. Technol., 1(3): 125-131.
  54. Owen, J.S. and N. Haritos, 2003. Damage detection in large-scale laboratory bridge models. Key Eng. Mater. J., 245-246: 35-42.
    CrossRef    
  55. Pawar, P.M., K.V. Reddy and R. Ganguli, 2007. Damage detection in beams using spatial fourier analysis and neural networks. Intell. Mater. Syst. Struct., 18: 347-359.
    CrossRef    
  56. Povich, C. and T.W. Lim, 1994. An artificial neural network approach to structural damage detection using frequency response function. Proceeding of the AIAA Adaptive Structures Forum, USA.
    CrossRef    
  57. Qu, F., D. Zou and X. Wang, 2004. Substructural damage detection using neural networks and ICA. Lect. Notes Comput. Sc., 3173: 750-754.
    CrossRef    
  58. Rhim, J. and S.W. Lee, 1995. A neural network approach for damage detection and identification of structures. Comput. Mech., 16: 437-443.
    CrossRef    
  59. Roberts, S. and L. Tarassenko, 1994. A probabilistic resource allocating network for novelty detection. Neural Comput., 6: 270-84.
    CrossRef    
  60. Rosales, M.B., C.P. Filipich and F.S. Buezas, 2009. Crack detection in beam-like structures. Eng. Struct., 31: 2257-2264.
    CrossRef    
  61. Rumelhart, D.E., R.J. Williams and G.E. Hinton, 1986. Learning representations by back propagation errors. Nature, 323: 533-536.
    CrossRef    
  62. Rytter, A., 1993.Vibration based inspection of civil engineering structures. Ph.D. Thesis, Aalborg University, Department of Building Technology and Structural Engineering, Denmark.
  63. Sahin, M. and R.A. Shenoi, 2003. Quantification and localization of damage in beam-like structures by using artificial neural networks with experimental validation. Eng. Struct., 25: 1785-1802.
    CrossRef    
  64. Salawu, O.S., 1997. Detection of structural damage through changes in frequency: A review. Eng. Struct., 19(9): 718-723.
    CrossRef    
  65. Schultz, M.J., P.F. Pai and A.S. Abdelnaser, 1996. Frequency response function assignment technique for structural damage identification. Proceedings of the 14th International Modal Analysis Conference (IMAC), pp: 105-111.
  66. Sohn, H. and R.C. Farar, 2000. Statistical process control and projection techniques for damage detection. Proceedings of the European COST F3 Conference on System Identification and Structural Health Monitoring. Spain, pp: 105-114.
  67. Sun, Y., 2009. Combined neural network and PCA for complicated damage detection of bridge. Proceedings of 5th International Conference on Natural Computation, pp: 524-528.
    CrossRef    
  68. Thomopoulos, S.C.A., D.K. Bougoulias and C.D. Wann, 1995. DIGNET: An unsupervised learning algorithm for clustering and data fusion. IEEE T. Aero. Elec. Sys., AES-31(1): 21-38.
    CrossRef    
  69. Wu, X., J. Ghaboussi and J.H. Garret, 1992. Use of neural networks in detection of structural damage. Comput. Struct., 41(4): 649-659.
    CrossRef    
  70. Wu, Z.S., B. Xu and K. Yokoyama, 2002. Decentralized parametric damage based on neural networks. Comput-Aided Civ. Inf., 17: 175-184.
  71. Xu, H. and J. Humar, 2006. Damage detection in a girder bridge by artificial neural network technique. Comput-Aided Civ. Inf., 21: 450-464.
  72. Yeung, W.T. and J.W. Smith, 2005. Damage detection in bridges using neural networks for pattern recognition of vibration signatures. Eng. Struct., 27(5): 685-698.
    CrossRef    
  73. Yuen, K.V. and H.F. Lam, 2006. On the complexity of artificial neural networks for smart structures monitoring. Eng. Struct., 28: 977-984.
    CrossRef    
  74. Zailah, W., M.A. Hannan and A. Al-Mamun, 2013. Feed forward neural network for solid waste image classification. Res. J. Appl. Sci. Eng. Technol., 5(4): 1466-1470.
  75. Zang, C. and M. Imregun, 2001a. Structural damage detection using artificial neural network and measured FRF data reduced via principal component projection. J. Sound Vib., 242(5): 813-827.
    CrossRef    
  76. Zang, C. and M. Imregun, 2001b. Combined neural network and reduced FRF techniques for slight damage detection using measured response data. Archive Appl. Mech., 71(8): 525-536.
    CrossRef    
  77. Zang, C., M.I. Friswell and M. Imregun, 2003. Structural health monitoring and damage assessment using measured FRFs from multiple sensors: part I: the indicator of correlation criteria. Key Eng. Mater., (245-246): 131-140.
    CrossRef    
  78. Zapico, A. and L. Molisani, 2009. Fault diagnosis on steel structure using artificial neural networks. Mecanica Comput., 28: 181-188.
  79. Zhao, J., J.N. Ivan and J.T. Dewolf, 1998. Structural damage detection using artificial neural networks. Infrastruct. Syst., 4: 93-101.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved