Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


A Review of Sensor System and Application in Milling Process for Tool Condition Monitoring

1, 2Muhammad Rizal, 2Jaharah A. Ghani, 2Mohd Zaki Nuawi and 2Che Hassan Che Haron
1Department of Mechanical Engineering, Faculty of Engineering, Syiah Kuala University (UNSYIAH), 23111, Darussalam, Banda Aceh, Indonesia
2Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
Research Journal of Applied Sciences, Engineering and Technology  2014  10:2083-2097
http://dx.doi.org/10.19026/rjaset.7.502  |  © The Author(s) 2014
Received: July 1, 2013  |  Accepted: July 12, 2013  |  Published: March 15, 2014

Abstract

This study presents a review of the state-of-the-art in sensor technologies and its application in milling process to measure machining signal for Tool Condition Monitoring (TCM) systems. Machining signals such as cutting force, torque, vibration, acoustic emission, current/power, sound and temperature from milling operation are briefly reviewed with the goal of indentifying the parameters for TCM. Sensors reviewed include both commercial and research devices that can measure machining signals. In this study describes trends in the sensor systems used and its potential for future research.

Keywords:

Milling process, sensor, sensor systems, tool condition monitoring,


References

  1. Abbas, J., A. Al-Habaibeh and D. Su, 2011. Sensor fusion for condition monitoring system of end milling operations. Key Eng. Mater., 450: 267-270.
    CrossRef    
  2. Abu-Zahra, N.H. and G. Yu, 2000. Analytical model for tool wear monitoring in turning operations using ultrasound waves. Int. J. Mach. Tool. Manu., 40: 1619-1635.
    CrossRef    
  3. Adolfsson, C. and J.E. Stahl, 1995. Cutting force model for multi-toothed cutting processes and force measuring equipment for face milling. Int. J. Mach. Tool. Manu., 35(12): 1715-1728.
    CrossRef    
  4. Ai, C.S., Y.J. Sun, G.W. He, X.B. Ze, W. Li and K. Mao, 2012. The milling tool wear monitoring using the acoustic spectrum. Int. J. Adv. Manuf. Tech., 61(5-8): 457-463.
    CrossRef    
  5. Albrecht, A., S.S. Park, Y. Altintas and G. Pritschow, 2005. High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors. Int. J. Mach. Tool. Manu., 45: 993-1008.
    CrossRef    
  6. Altintas, Y., 2000. Manufacturing Automation: Metal Cutting Mechanics. Machine Tool Vibrations and CNC Design. Cambridge University Press, New York.
  7. Andersson, C., M. Andersson and J.E. Stahl, 2011. Experimental studies of cutting force variation in face milling. Int. J. Mach. Tool. Manu., 51: 67-76.
    CrossRef    
  8. Aoyama, H. and T. Ishii, 2004. Sensor to detect cutting force components, cutting torque and cutting tool deflections. J. Manuf. Processes, 6(2): 141-147.
    CrossRef    
  9. Atlas, L., M. Ostendod and G.D. Bernard, 2000. Hidden markov models for monitoring machining tool-wear. Proceeding of International Conference on Acoustics, Speech and Signal Processing. Istanbul, pp: 3887-3890.
    CrossRef    
  10. Auchet, S., P. Chevrier, M. Lacour and P. Lipinski, 2004. A new method of cutting force measurement based on command voltages of active electro-magnetic bearings. Int. J. Mach. Tool. Manu., 44: 1441-1449.
    CrossRef    
  11. Axinte, D. and N. Gindy, 2004. Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes. Int. J. Prod. Res., 42(13): 2679-2691.
    CrossRef    
  12. Bhattacharyya, P., D. Sengupta and S. Mukhopadhyay, 2007a. Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques. Mech. Syst. Sig. Process., 21: 2665-2683.
    CrossRef    
  13. Bhattacharyya, P., D. Sengupta, S. Mukhopadhyay and A.B. Chattopadhyay, 2007b. On-line tool condition monitoring in face milling using current and power signals. Int. J. Prod. Res., 46(4): 1187-1201.
    CrossRef    
  14. Byrne, G. and G.E. O'Donnell, 2007. An integrated force sensor solution for process monitoring of drilling operations. CIRP Ann-Manuf. Techn., 56(1): 89-92.
  15. Byrne, G., D. Dornfeld, I. Inasaki, G. Ketteler, W. Konig and R. Teti, 1995. Tool condition monitoring (TCM)-the status of research and industrial application. CIRP Ann-Manuf. Techn., 44: 541-567.
  16. Callaway, E.H., 2004. Wireless Sensor Networks: Architectures and Protocols. Auerbach Publications, New York, NY, USA.
  17. Cao, H., X. Chen, Y. Zi, F. Ding, H. Chen, J. Tan and Z. He, 2008. End milling tool breakage detection using lifting scheme and Mahalanobis distance. Int. J. Mach. Tool. Manu., 48: 141-151.
    CrossRef    
  18. Carolan, T.A., S.R. Kidd, D.P. Hand, S.J. Wilcox, P. Wilkinson, J.S. Barton, J.D.C. Jones and R.L. Reuben, 1997a. Acoustic emission monitoring of tool wear during the face milling of steels and aluminium alloys using a ?bre optic sensor Part 1: energy analysis. P. I. Mech. Eng. B-J. Eng., 211: 299-309.
    CrossRef    
  19. Carolan, T.A., S.R. Kidd, D.P. Hand, S.J. Wilcox, P. Wilkinson, J.S. Barton, J.D.C. Jones and R.L. Reuben, 1997b. Acoustic emission monitoring of tool wear during the face milling of steels and aluminium alloys using a ?bre optic sensor Part 2: frequency analysis. P. I. Mech. Eng. B-J. Eng., 211: 311-319.
    CrossRef    
  20. Castillo-Casta-eda, E., 2003. On-line wear detection of milling tools using a displacement fiber optic sensor. J. Appl. Res. Technol., 1(2): 164-174.
  21. Chen, O.C. and A.L. Chen, 1999. A tool breakage detection system using an accelerometer sensor. J. Intell. Manuf., 10: 187-197.
    CrossRef    
  22. Chen, J.C. and J.C. Chen, 2004. A multiple-regression model for monitoring tool wear with a dynamometer in milling operations. J. Technol. Stud., 75: 71-77.
    CrossRef    
  23. Chen, X.Q. and H.Z. Li, 2009. Development of a tool wear observer model for online tool condition monitoring and control in machining nickel-based alloys. Int. J. Adv. Manuf. Tech., 45: 786-800.
    CrossRef    
  24. Cho, S., S. Asfour, A. Onar and N. Kaundinya, 2005. Tool breakage detection using support vector machine learning in a milling process. Int. J. Mach. Tool. Manu., 45: 241-249.
    CrossRef    
  25. Choi, Y., R. Narayanaswami and A. Chandra, 2004. Tool wear monitoring in ramp cuts in end milling using the wavelet transform. Int. J. Adv. Manuf. Tech., 23: 419-428.
    CrossRef    
  26. Choudhury, S.K. and S. Rath, 2000. In-process tool wear estimation in milling using cutting force model. J. Mater. Process. Technol., 99: 113-119.
    CrossRef    
  27. Chuangwen, X., L. Zhe and L. Wencui, 2009. A frequency band energy analysis of vibration signals for tool condition monitoring. Proceeding of International Conference on Measuring Technology and Mechatronics Automation.
  28. Coz, G.L., M. Marinescu, A. Devillez, D. Dudzinski and L. Velnom, 2012. Measuring temperature of rotating cutting tools: Application to MQL drilling and dry milling of aerospace alloys. Appl. Therm. Eng., 36: 434-441.
    CrossRef    
  29. Cu�, F. and U. �uperl, 2011. Real-time cutting tool condition monitoring in milling. J. Mech. Eng., 57(2): 142-150.
    CrossRef    
  30. Dewes, R.C., E.G. Ng, K.S. Chua, P.G. Newton and D.K. Aspinwall, 1999. Temperature measurement when high speed machining hardened mould/die steel. J. Mater. Process. Technol., 92-93: 293-301.
    CrossRef    
  31. Deyuan, Z., H. Yuntai and C. Dingchang, 1995. On-line detection of tool breakages using telemetering of cutting forces in milling. Int. J. Mach. Tool. Manu., 35(1): 19-27.
    CrossRef    
  32. Dini, G. and F. Tognazzi, 2007. Tool condition monitoring in end milling using a torque-based sensorized toolholder. P. I. Mech. Eng. B-J. Eng., 221: 11-23.
  33. Figliola, R.S. and D.E. Beasley, 2000. Theory and Design for Mechanical Measurements. 3rd Edn., John Wiley and Sons, Inc., New York.
  34. Ghani, J.A., M. Rizal, M.Z. Nuawi, C.H.C. Haron, M.J. Ghazali and M.N.A. Rahman, 2010. Online cutting tool wear monitoring using I-kaz method and new regression model. Adv. Mater. Res., 126-128: 738-743.
    CrossRef    
  35. Ghani, J.A., M. Rizal, M.Z. Nuawi, M.J. Ghazali and C.H.C. Haron, 2011. Monitoring online cutting tool wear using low-cost technique and user-friendly GUI. Wear, 271: 2619- 2624.
    CrossRef    
  36. Ghosh, N., Y.B. Ravi, A. Patra, S. Mukhopadhyay, S. Paul, A.R. Mohanty and A.B. Chattopadhyay, 2007. Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech. Syst. Sig. Process., 21: 466-479.
    CrossRef    
  37. Girardin, F., D. Remond and J.F. Rigal, 2010. A new method for detecting tool wear and breakage in milling. Int. J. Mater. Forming, 3(1): 463-466.
    CrossRef    
  38. Govekar, E., J. Gradisek and I. Grabec, 2000. Analysis of acoustic emission signals and monitoring of machining processes. Ultrasonics, 38(38): 598-603.
    CrossRef    
  39. Haber, R.E., J.E. Jim�nez, C.R. Peres and J.R. Alique, 2004. An investigation of tool-wear monitoring in a high-speed machining process. Sensor Actuat. A-Phys., 116(3): 539-545.
  40. Huang, P.T. and J.C. Chen, 2000. Neural network-based tool breakage monitoring system for end milling operations. J. Ind. Technol., 16(2): 1-7.
  41. Huang, P.T., J.C. Chen and C.Y. Chou, 1999. A statistical approach in detecting tool breakage in end milling operations. J. Ind. Technol. 15, (3): 1-7.
  42. Huang, P., J. Li, J. Sun and M. Ge, 2012a. Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill. Int. J. Adv. Manuf. Tech., 58(1-4): 153-160.
    CrossRef    
  43. Huang, P., J. Li, J. Sun and J. Zhou, 2012b. Vibration analysis in milling titanium alloy based on signal processing of cutting force. Int. J. Adv. Manuf. Tech., 64(5-8): 613-621.
    CrossRef    
  44. Huang, S., D.H. Zhang, W.Y. Leong, H.L. Chan, K.M. Goh, J.B. Zhang and Kristo, 2008. Detecting tool breakage using accelerometer in ball-nose end milling. Proceeding of the IEEE 10th International Conference on Control, Automation, Robotics and Vision (ICARCV). Hanoi, Vietnam, pp: 927-933.
  45. Hutton, D.V. and F. Hu, 1999. Acoustic emission monitoring of tool wear in end milling using time-domain averaging. J. Manuf. Sci. E-T. ASME, 121: 8-12.
  46. Inasaki, I., 1998. Application of acoustic emission sensor for monitoring machining processes Ultrasonics, 36: 273-281.
    CrossRef    
  47. Insperger, T., B.P. Mann, T. Surmann and G. St�p�n, 2008. On the chatter frequencies of milling processes with runout. Int. J. Mach. Tool. Manu., 48(10): 1081-1089.
    CrossRef    
  48. Jakobsen, M.L., P. Wilkinson, J.S. Barton, R.L. Reuben, D. Harvey and J.D.C. Jones, 2005. The effects of progressive wear on the frequency characteristic of acoustic emission acquired during face milling. P. I. Mech. Eng. B-J. Eng., 219: 803-810.
  49. Jeong, Y.H. and D.W. Cho, 2002. Estimating cutting force from rotating and stationary feed motor currents on a milling machine. Int. J. Mach. Tool. Manu., 42: 1559-1566.
    CrossRef    
  50. Jes�s, R.T.R.D., H.R. Gilberto, T.V. Iv�n and J.C.J. Carlos, 2003. Driver current analysis for sensorless tool breakage monitoring of CNC milling machines. Int. J. Mach. Tool. Manu., 43(15): 1529-1534.
    CrossRef    
  51. Jun, M.B., O.B. Ozdoganlar, R.E. DeVor, S.G. Kapoor, A. Kirchheim and G. Schaffner, 2002. Evaluation of a spindle-based force sensor for monitoring and fault diagnosis of machining operations. Int. J. Mach. Tool. Manu., 42: 741-751.
    CrossRef    
  52. Kalvoda, T. and Y.R. Hwang, 2010a. Analysis of signals for monitoring of nonlinear and non-stationary machining processes. Sensor Actuat. A-Phys., 161(1-2): 39-45.
  53. Kalvoda, T. and Y.R. Hwang, 2010b. A cutter tool monitoring in machining process using Hilbert-Huang transform. Int. J. Mach. Tool. Manu., 50: 495-501.
    CrossRef    
  54. Kaya, B., C. Oysu and H.M. Ertunc, 2011. Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks. Adv. Eng. Software, 42: 76-84.
    CrossRef    
  55. Kim, S.J., H.U. Lee and D.W. Cho, 2007. Prediction of chatter in NC machining based on a dynamic cutting force model for ball end milling. Int. J. Mach. Tool. Manu., 47: 1827-1838.
    CrossRef    
  56. Kim, T.Y., J. Woob, D. Shin and J. Kim, 1999. Indirect cutting force measurement in multi-axis simultaneous NC milling processes. Int. J. Mach. Tool. Manu., 39: 1717-1731.
    CrossRef    
  57. Kim, S.W., C.M. Lee, D.W. Lee, J.S. Kim and Y.H. Jung, 2001. Evaluation of the thermal characteristics in high-speed ball-end milling. J. Mater. Process. Technol., 113(1-3): 406-409.
    CrossRef    
  58. Kious, M., A. Ouahabi, M. Boudraa, R. Serra and A. Cheknane, 2010. Detection process approach of tool wear in high speed milling. Meas., 43: 1439-1446.
    CrossRef    
  59. Kistler, 2012. Brochure of Cutting Force Measurement. (Assessed on: April 9, 2012).
    Direct Link
  60. Ko, T.J., D.W. Cho and M.Y. Jung, 1995. On-line monitoring of tool breakage in face milling using a self-organized neural network. J. Manuf. Syst., 14(2): 80-90.
    CrossRef    
  61. Kopac, J. and S. Sali, 2001. Tool wear monitoring during the turning process. J. Mater. Process. Technol., 113: 312-316.
    CrossRef    
  62. Korkut, I., 2003. A dynamometer design and its construction for milling operation. Mater. Des., 24: 631-637.
    CrossRef    
  63. Kuljanic, E. and M. Sortino, 2005. TWEM: A method based on cutting forces-monitoring tool wear in face milling. Int. J. Mach. Tool. Manu., 45: 29-34.
    CrossRef    
  64. Kuljanic, E., G. Totis and M. Sortino, 2009. Development of an intelligent multisensor chatter detection system in milling. Mech. Syst. Sig. Process., 23: 1704-1718.
    CrossRef    
  65. Kurada, S. and C. Bradley, 1997. A review of machine vision sensors for tool condition monitoring. Comput. Ind., 34: 55-72.
    CrossRef    
  66. Lacerda, H.B. and V.T. Lima, 2004. Evaluation of cutting forces and prediction of chatter vibrations in milling. J. Braz. Soc. Mech. Sci., 26(1): 74-81.
    CrossRef    
  67. Lee, B.Y. and Y.S. Tarng, 1999. Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current. Int. J. Adv. Manuf. Tech., 15: 238-243.
    CrossRef    
  68. Lee, B.Y., H.S. Liu and Y.S. Tarng, 1997. Monitoring of tool fracture in end milling using induction motor current. J. Mater. Process. Technol., 70: 279-284.
    CrossRef    
  69. Lee, K.J., T.M. Lee and M.Y. Yang, 2007. Tool wear monitoring system for CNC end milling using a hybrid approach to cutting force regulation. Int. J. Adv. Manuf. Tech., 32: 8-17.
    CrossRef    
  70. Lee, J.M., D.K. Choi, J. Kim and C.N. Chu, 1995. Real-time tool breakage monitoring for NC milling process. CIRP Ann-Manuf. Techn., 44(1): 59-62.
  71. Li, X., 2001. Detection of tool flute breakage in end milling using feed-motor current signatures. IEEE-ASME T. Mech., 6(4): 491-498.
  72. Li, X., 2002. A brief review: Acoustic emission method for tool wear monitoring during turning. Int. J. Mach. Tool. Manu., 42: 157-165.
    CrossRef    
  73. Li, X. and Z. Yuan, 1998. Tool wear monitoring with wavelet parket transform-fuzzy clustering method. Wear, 219: 145-154.
    CrossRef    
  74. Li, X. and X.P. Guan, 2004. Time-frequency-analysis-based minor cutting edge fracture detection during end milling. Mech. Syst. Sig. Process., 18: 1485-1496.
    CrossRef    
  75. Li, X., G. Ouyang and Z. Liang, 2008. Complexity measure of motor current signals for tool ?ute breakage detection in end milling Int. J. Mach. Tool. Manu., 48: 371-379.
    CrossRef    
  76. Lim, G.H., 1995. Tool wear monitoring in machine turning. J. Mater. Process. Technol., 51: 25-36.
    CrossRef    
  77. Lin, S.C. and R.J. Lin, 1996. Tool wear monitoring in face milling using force signals. Wear, 198: 136-142.
    CrossRef    
  78. Lou, S.J. and J.C. Chen, 1999. In-Process Surface Roughness Recognition (ISRR) system in end-milling operations. Int. J. Adv. Manuf. Tech., 15: 200-209.
    CrossRef    
  79. Ma, L., S.N. Melkote, J.B. Morehouse, J.B. Castle and J.W. Fonda, 2010. On-line monitoring of end milling forces using a thin film based wireless sensor module. Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, ASME, ASME, Erie, Pennsylvania, USA.
    CrossRef    
  80. Mannan, M.A., A.A. Kassim and M. Jing, 2000. Application of image and sound analysis techniques to monitor the condition of cutting tools. Pattern Recogn. Lett., 21(11): 969-979.
    CrossRef    
  81. Mathew, M.T., P.S. Pai and L.A. Rocha, 2008. An effective sensor for tool wear monitoring in face milling: Acoustic emission. Sadhana, 33(3): 227-233.
    CrossRef    
  82. Matsubara, A., Y. Kakino and T. Ogawa, 2000. Monitoring of cutting forces in end-milling for intelligent machine tools. Proceedings of the 5th International Conference on Progress of Machining Technology (ICPMT). Beijing, P.R. China, pp: 615.
  83. McBride, R., T.A. Carolan, J.S. Barton, S.J. Wilcox, W.K.D. Borthwick and J.D.C. Jones, 1993. Detection of acoustic emission in cutting processes by fibre optic interferometry. Meas. Sci. Technol., 4: 1122-1128.
    CrossRef    
  84. Mehta, N.K., P.C. Pandey and G. Chakravarti, 1983. An investigation of tool wear and the vibration spectrum in milling. Wear, 91(2): 219-234.
    CrossRef    
  85. Muravin, B., 2012. Acoustic Emission Sensors, Equipment.
    Direct Link
  86. Najafi, B. and H. Hakim, 1992. A comparative study of non-parametric spectral estimators for application in machine vibration analysis. Mech. Syst. Sig. Process., 6(6): 551-574.
    CrossRef    
  87. Nakagawa, H., Y. Kurita, K. Ogawa, Y. Sugiyama and H. Hasegawa, 2008. Experimental analysis of chatter vibration in end-milling using laser doppler vibrometers. Int. J. Automat. Technol., 2(6): 431-438.
    CrossRef    
  88. Nayfeh, T.H., O.K. Eyada and J.C. Duke, 1995. An integrated ultrasonic sensor for monitoring gradual wear on-line during turning operations. Int. J. Mach. Tool. Manu., 35: 1385-1395.
    CrossRef    
  89. Ng, E.G., D.W. Lee, A.R.C. Sharman, R.C. Dewes and D.K. Aspinwall, 2000. High speed ball nose end milling of inconel 718. CIRP Ann-Manuf. Techn., 49: 41-46.
  90. Norman, P., A. Kaplan, M. Rantatalo and I. Svenningsson, 2007. Study of a sensor platform for monitoring machining of aluminium and steel. Meas. Sci. Technol., 18: 1155-1166.
    CrossRef    
  91. Nuawi, M.Z., F. Lamin, A.R. Ismail, S. Abdullah and Z. Wahid, 2009. A novel machining signal filtering technique: Z-notch filter word academic science. Eng. Technol., 54(54): 24-29.
  92. Nuawi, M.Z., F. Lamin, M.J.M. Nor, N. Jamaluddin, S. Abdullah and C.K.E. Nizwan, 2007. Integration of I-kaz Coefficient and taylor tool life curve for tool wear progression monitoring in machining process. Int. J. Mech., 4(1): 44-50.
  93. Orhan, S., A.O. Er, N. Camuscu and E. Aslan, 2007. Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness. NDT&E Int., 40: 121-126.
    CrossRef    
  94. Pai, P.S. and P.K.R. Rao, 2002. Acoustic emission analysis for tool wear monitoring in face milling. Int. J. Prod. Res., 40(5): 1081-1093.
    CrossRef    
  95. Park, S.S., 2004. High frequency bandwidth cutting force measurements in milling using the spindle force sensor system. Ph.D. Thesis, University of British Columbia.
  96. Park, S.S. and Y. Altintas, 2004. Dynamic compensation of spindle integrated force sensors with Kalman filter. J. Dyn. Syst. Meas. Contr., 126: 443-452.
    CrossRef    
  97. Pongsathornwiwat, N. and S. Tangjitsitcharoen, 2010 Intelligent monitoring and detection of chatter in ball-end milling process on CNC machining center. Proceeing of the 40th International Conference on Computers and Industrial Engineering (CIE).
    CrossRef    
  98. Rehorn, A.G., J. Jiang and P.E. Orban, 2005. State-of-the-art methods and results in tool condition monitoring: A review. Int. J. Adv. Manuf. Tech., 26: 693-710.
    CrossRef    
  99. Rubio, E.M. and R. Teti, 2009. Cutting parameters analysis for the development of a milling process monitoring system based on audible energy sound. J. Intell. Manuf., 20: 43-54.
    CrossRef    
  100. Ryabov, O., K. Mori and N. Kasashima, 1998. Laser displacement meter application for milling diagnostics. Opt. Las. Eng., 30: 251-263.
    CrossRef    
  101. Saglam, H. and A. Unuvar, 2003. Tool condition monitoring in milling based on cutting forces by a neural network. Int. J. Prod. Res., 41(7): 1519-1532.
    CrossRef    
  102. Sarhan, A., R. Sayed, A.A. Nassr and R.M. El-Zahry, 2001. Interrelationships between cutting force variation and tool wear in end-milling. J. Mater. Process. Technol., 109: 229-235.
    CrossRef    
  103. Sarhan, A.A.D., A. Matsubara, S. Ibaraki and Y. Kakino, 2004. Monitoring of cutting force using spindle displacement sensor. Proceedings of the 2004 JUSFA Japan-USA Symposium on FlexibleAutomation. Denver, Colorado.
  104. Sarhan, A.A.D., A. Matsubara, M. Sugihara, H. Saraie, S. Ibaraki and Y. Kakino, 2006. Monitoring method of cutting force by using additional spindle sensors. JSME Int. J. Ser. C, 49(2): 307-315.
    CrossRef    
  105. Sato, M., N. Tamura and H. Tanaka, 2011. Temperature variation in the cutting tool in end milling. J. Manuf. Sci. Eng., 133: 021005-1-021005-7.
    CrossRef    
  106. Sato, M., T. Ueda and H. Tanaka, 2007. An experimental technique for the measurement of temperature on CBN tool face in end milling. Int. J. Mach. Tool. Manu., 47: 2071-2076.
    CrossRef    
  107. Scheer, C., P. Hoffmann, A. Kirchheim and G. Schaffner, 1999. Spindle-integrated force sensors for monitoring drilling and milling processes. Proceeding of the 9th International Conference for Sensors, Transducers and Systems. N�rnberg, Germany.
  108. Schmitz, T.L. and K.S. Smith, 2009. Machining Dynamics: Frequency Response to Improved Productivity. Springer, New York.
    CrossRef    
  109. Sevilla-Camacho, P.Y., G. Herrera-Ruiz, J.B. Robles-Ocampo and J.C. J�uregui-Correa, 2011. Tool breakage detection in CNC high-speed milling based in feed-motor current signals. Int. J. Adv. Manuf. Tecnol., 53: 1141-1148.
    CrossRef    
  110. Shao, H., X. Shi and L. Li, 2011. Power signal separation in milling process based on wavelet transform and independent component analysis. Int. J. Mach. Tool. Manu., 51: 701-710.
    CrossRef    
  111. Sick, B., 2002. on-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mech. Syst. Sig. Process., 16(4): 487-546.
    CrossRef    
  112. Smith, D.A., S. Smith and J. Tlusty, 1998. High performance milling torque sensor. J. Manuf. Sci. Eng., 120: 504-514.
    CrossRef    
  113. Spiewak, S.A., 1995. Acceleration based indirect force measurement in metal cutting processes. Int. J. Mach. Tool. Manu., 35(1): 1-17.
    CrossRef    
  114. Stirnimann, J., P. Tschanz and K. Unzicker, 2012. New Rotating Dynamometer for the Analysis of High Speed Cutting Processes. (Assessed on: April 10, 2012).
    Direct Link
  115. Sun, J., P. Zhu, X. Li, H. Liu, Z. Yuan and X. Qin, 2007. The online monitoring system of tool wear in numerical control plunge milling based on PC104 bus. Proceeding of the International Conference on Automation and Logistics. Jinan, China, pp: 1679-1683.
    CrossRef    
  116. Suprock, C.A. and J.S. Nichols, 2009. A low cost wireless high bandwidth transmitter for sensor-integrated metal cutting tools and process monitoring. Int. J. Mechatr. Manuf. Syst., 2(4): 441-454.
    CrossRef    
  117. Suprock, C.A., B.K. Fussell, R.Z. Hassan and R.B. Jerard, 2008. A low cost wireless tool tip vibration sensor for milling. Proceeding of the International Manufacturing Science and Engineering Conference (MSEC2008). ASME, ASME, Evanston, IL, USA, pp: 1-10.
    CrossRef    
  118. Susanto, V. and J.C. Chen, 2003. Fuzzy logic based in-process tool-wear monitoring system in face milling operations. Int. J. Adv. Manuf. Tech., 3: 186-192.
  119. Tansel, I.N., M. Demetgul, K. Bickraj, B. Kaya and B. Ozcelik, 2011. Basic computational tools and mechanical hardware for torque-based diagnostic of machining operations. J. Intell. Manuf., 24(1): 141-161.
  120. Tansel, I.N., M. Li, M. Demetgul, K. Bickraj, B. Kaya and B. Ozcelik, 2012. Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR). Int. J. Adv. Manuf. Tech., 58: 109-118.
    CrossRef    
  121. Tansel, I., M. Trujillo, A. Nedbouyan, C. Velez, W.Y. Bao, T.T. Arkan and B. Tansel, 1998. Micro-end-milling-III. Wear estimation and tool breakage detection using acoustic emission signals. Int. J. Mach. Tool. Manu., 39: 1449-1466.
    CrossRef    
  122. Tatar, K. and P. Gren, 2008. Measurement of milling tool vibrations during cutting using laser vibrometry. Int. J. Mach. Tool. Manu., 48: 380-387.
    CrossRef    
  123. Teti, R., K. Jemielniak, G. O'Donnell and D. Dornfeld, 2010. Advanced monitoring of machining operations. CIRP Ann-Manuf. Techn., 59: 717-739.
  124. Totis, G., G. Wirtz, M. Sortino, D. Veselovac, E. Kuljanic and F. Klocke, 2010. Development of a dynamometer for measuring individual cutting edge forces in face milling. Mech. Syst. Sig. Process., 24: 1844-1857.
    CrossRef    
  125. Tseng, P.C. and A. Chou, 2002. The intelligent on-line monitoring of end milling. Int. J. Mach. Tool. Manu., 42: 89-97.
    CrossRef    
  126. Ueda, T., A. Hosokawa, K. Oda and K. Yamada, 2001. Temperature on flank face of cutting tool in high speed milling. CIRP Ann-Manuf. Techn., 50(1): 37-40.
  127. Ueda, T., M. Sato, A. Hosokawa and M. Ozawa, 2008. Development of infrared radiation pyrometer with optical fibers: Two-color pyrometer with non-contact fiber coupler. CIRP Ann-Manuf. Techn., 57: 69-72.
    CrossRef    
  128. Wang, W.H., G.S. Hong, Y.S. Wong and K.P. Zhu, 2007. Sensor fusion for online tool condition monitoring in milling. Int. J. Prod. Res., 45(21): 5095-5116.
    CrossRef    
  129. Weingaertner, W.L., R.B. Schroeter, M.L. Polli and J.D.O. Gomes, 2006. Evaluation of high-speed end-milling dynamic stability through audio signal measurements. J. Mater. Process. Technol., 179: 133-138.
    CrossRef    
  130. Wilkinson, P., R.L. Reuben, J.D.C. Jones, J.S. Barton, D.P. Hand, T.A. Carolan and S.R. Kidds, 1999. Tool wear prediction from acoustic emission and surface characteristics via an artificial neural network. Mech. Syst. Sig. Process., 13(6): 955-966.
    CrossRef    
  131. Wilson, J.S., 2005. Sensor Technology Handbook. Elsivier Inc., Burlington, USA.
  132. Wright, P.K., D. Dornfeld and N. Ota, 2008. Condition monitoring in end-milling using Wireless Sensor Networks (WSNs). Trans. NAMRI/SME, 36: 177-183.
  133. Wright, P.K., D. Dornfeld, R.G. Hillaire and N.K. Ota, 2006. A Wireless Sensor for Tool Temperature Measurement and its Integration within a Manufacturing System. LMAS, Laboratory for Manufacturing and Sustainability (LMAS), Berkeley.
  134. Xiqing, M. and X. Chuangwen, 2009. Tool wear monitoring of acoustic emission signals from milling processes. Proceeding of the 1st International Workshop on Education Technology and Computer Science.
    CrossRef    
  135. Yaldiz, S., F. Unsacar, H. Saglam and H. Isik, 2007. Design, development and testing of a four-component milling dynamometer for the measurement of cutting force and torque. Mech. Syst. Sig. Process., 21: 1499-1511.
    CrossRef    
  136. Yan, W., Y.S. Wong, K.S. Lee and T. Ning, 1999. An investigation of indices based on milling force for tool wear in milling. J. Mater. Process. Technol., 89-90: 245-253.
    CrossRef    
  137. Yeo, S.H., L.P. Khoo and S.S. Neo, 2000. Tool condition monitoring using reflectance of chip surface and neural network. J. Intell. Manuf., 11: 507-514.
    CrossRef    
  138. Yesilyurt, I. and H. Ozturk, 2007. Tool condition monitoring in milling using vibration analysis. Int. J. Prod. Res., 45(4): 1013-1028.
    CrossRef    
  139. Young, H.T., 1996. Cutting temperature responses to flank wear. Wear, 201: 117-120.
    CrossRef    
  140. Zhang, J.Z. and J.C. Chen, 2008. Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system. Int. J. Adv. Manuf. Tech., 39: 118-128.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved