Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Effect of Some Input Parameters on 3D Basin and Petroleum Systems Modelling: A Case Study of the Norwegian Section of the Northern North Sea

1Joel Ben-Awuah, 1Spariharijoana Andriamiaja, 1Abubakar Mijinyawa, 1Abdullah Ali, 1, 2Numair Ahmed Siddiqui and 3Gerald Wemazenu Adda
1Department of Geosciences, Faculty of Geosciences and Petroleum Engineering, University Teknologi PETRONAS (UTP), 31750 Tronoh, Perak-Malaysia
1, 2Department of Petroleum Engineering, NED University of Engineering and Technology, Karachi, Pakistan
3Petroleum Commission, Ghana
Research Journal of Applied Sciences, Engineering and Technology  2014  18:3746-3762
http://dx.doi.org/10.19026/rjaset.7.730  |  © The Author(s) 2014
Received: July 25, 2013  |  Accepted: August 12, 2013  |  Published: May 10, 2014

Abstract

The objective of this study is to test the influence of some key input parameters in basin modelling and to evaluate the resultant effect of varying these parameters on the model. 3D basin modelling and petroleum system analysis of the northern North Sea has been carried out using the PETROMOD software. The model was calibrated using well 34/8-7 in the Visund field. Different input parameters such as heat flow, source rock properties, fault properties, paleo water depth, source rock kinetics, migration methods and different erosion scenarios have been varied and their effects on the model assessed. The effect of the various input parameters has been assessed in terms of hydrocarbon volumes in the Kvitebjørn and Visund fields, source rock maturity, transformation ratios, hydrocarbon saturations and the time hydrocarbon generation began in the Draupne and Heather Formation source rocks. Increase in heat flow increases source rock maturity, the start of hydrocarbon generation, transformation ratios and results in the generation of a lot more gas than oil. Hydrocarbon generation starts at shallower depths with higher heat flow. Increasing Total Organic Content (TOC) and Hydrogen Index (HI) generally results in increase in the volume of hydrocarbons generated. The increase in HI, however, results in the generation of a lot more oil than gas. High TOC and HI also increase the hydrocarbon saturations in the source rock. Increasing Paleo Water Depth (PWD) has a marginal effect on the model. It increases the volume of oil and decreases the volume of gas marginally. Varying the PWD has no significant effect on source rock maturity, transformation ratios and hydrocarbon saturations. Opening the fault planes resulted in an increase in the volume of hydrocarbons generated. The increase was more evident in the volume of oil than gas. This increase in volumes is a consequence of additional migration pathways created by the faults. Varying the erosion thickness of the Draupne Formation did not have any effect on the model.

Keywords:

Basin modelling, heat flow, input parameters, petroleum system modelling, source rocks,


References

  1. Belaid, A., M.B. Krooss and R. Littke, 2010. Thermal history and source rock characterization of Paleozoic section in the Awbari Trough, Murzuq Basin, SW Libya. Mar. Petrol. Geol., 27(3): 612-632.
    CrossRef    
  2. Ben-Awuah, J., G.W. Adda, A. Mijinyawa, S. Andriamihaja and N.A. Siddiqui, 2013. 2D basin modelling and petroleum system analysis of the triassic play in the Hammerfest basin of the Norwegian Barents Sea. Res. J. Appl. Sci. Eng. Technol., 6(17): 3137-3150.
  3. Brennand, T.P., B. Van Hoorn, K.H. James and K.W. Glennie, 1998. Historical Review of North Sea Exploration. In: Glennie, K.W. (Ed.), Petroleum geology of the North Sea. 4th Edn., Blackwell Science Ltd., London, pp: 1-41.
    CrossRef    
  4. Burnham, A.K., 1989. A simple kinetic model of petroleum formation and cracking. Lawrence Livermore Laboratory Report no: UCID-21665, Lawrence Livermore National Laboratory.
  5. Childs, C., O. Sylta, S. Moriya, J.J. Walsh and T. Manzocchi, 2002. A Method for Including the Capillary Properties of Faults in Hydrocarbon Migration Models. In: Koestler, A.G. and Hunsdale, R. (Eds.), Stavanger Hydrocarbon Seal Quanitification. Norwegian Petroleum Society, Special Publication, pp: 11.
    CrossRef    
  6. Curtin, D.P. and S. Ballestad, 1986. South Viking Graben: Habitat of Mesozoic hydrocarbons. In: Spencer, A.M., E. Holter, C.J. Campbell, S. Hanslien, P.H.H. Nelson, E. Nysaether and E. Ormassen (Eds.), Habitat of Hydrocarbons on the Norwegian Continental Shelf: Norwegian Petroleum Society, Stavanger, Graham and Troman, pp: 153-157.
  7. Eldholm, O., E. Sundvor, P.R. Vogt, B.O. Hjelstuen, K. Crane, A.K. Nilsen and T.P. Gladczenko, 1999. SW Barents Sea continental margin heat flow and Hakon Mosby mud volcanoes. Geo-Mar. Lett., 19: 29-37.
    CrossRef    
  8. Fraser, S.I., A.M. Robinson, H.D. Johnson, J.R. Underhill, D.G.A. Kadolsky, R. Connell, P. Johannessen and R. Ravnås, 2002. Upper Jurassic. In: Evans, D., C. Graham, A. Armour and P. Bathurst (Eds.), the Millenium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society, London, pp: 157-189.
  9. Glennie, K.W. and J.R. Underhill, 1998. The development and evolution of structural styles in the North Sea. In: Glennie, K.W. (Ed.), Introduction to the Petroleum Geology of the North Sea, Blackwell Scientific Publications, London, pp: 42-84.
  10. Goff, J.C., 1983. Hydrocarbon generation and migration from Jurassic source rocks in the Shetland basin and Viking graben of the northern North Sea. J. Geol. Soc. London, 140(3): 445-474.
    CrossRef    
  11. Goldsmith, P.J., G. Hudson and Van Veen, 2003. Triassic. In: Evans, D., Graham, C., Armour. A. and Bathurst, P. (Eds.), The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea, The Geological Society of London, pp: 105-127.
  12. Hantschel, T. and A.I. Kauerauf, 2009. Fundamentals of Basin and Petroleum Systems Modelling. Springer-Verlag, Berlin, Heidelberg, pp: 404.
  13. Kjennerud, T., J.I. Faleide, R.H. Gabrielsen, G.K. Gillmore, R. Kyrkjebø, S.J. Lippard and H. Løseth, 2001. Structural Restoration of Cretaceous-Cenozoic (post-rift) Palaeobathymetry in the Northern North Sea. In: Martinsen, O.J. and T. Dreyer (Eds.), Sedimentary Environments of Offshore Norway-Paleozoic to Recent. NPF Special Publication, 10: 347-364.
  14. Kubala, M., M. Bastow, S. Thompson, I. Scotchman and K. Oygard, 2003. Geothermal Regime, Petroleum Generation and Migration. In: Evans, D., C. Graham, A. Armour and P. Bathurst (Eds.), The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea, pp: 289-315.
  15. Lerche, I., 1993. Theoretical aspects of problems in basin modelling. in A. G. Doré, J. H. Augustson, C. Hermanrud, D. J. Stewart and Ø. Sylta (Eds.), basin Modeling: Advances and Applications. NFP Special Publication 3, Elsevier, Amsterdam, pp: 33-65.
  16. Lucazeau, F. and S. Le Douaran, 1985. The blanketing effect of sediments in basins formed by extension: a numerical model. Application to the Golf of Lion and Viking Grabens. Earth Planet. Sc. Lett., 74(1): 92-102.
    CrossRef    
  17. Magoon, L.B. and W.G. Dow, 1994. The Petroleum System. In: Magoon, L.B. and W.G. Dow (Eds.), the Petroleum System. From Source to Trap. AAPG Memoir 60, pp: 3-24.
  18. Miles, J.A., 1990. Secondary migration routes in the Brent sandstones of the Viking Graben and East Shetland Basin: Evidence from oil residues and subsurface pressure data. AAPG Bull., 74: 1718-1735.
  19. Moretti, I. and K. Deacon, 1995. Subsidence, maturation and migration history of the Tampen Spur area. Mar. Petrol. Geol., 12: 345-375.
    CrossRef    
  20. Norwegian Petroleum Directorate, 1996. Geology and Petroleum Resources in the Barents Sea.
  21. Schroeder, F.W. and Ø. Sylta, 1993. Modelling of Hydrocarbon System of the North Viking Graben: A Case Study. NFP Special Publication, 3: 469-484.
  22. Solli, T., 1995. Upper Jurassic plays concept-an integrated study in Block 34/7, Norway. First Break, 13: 21-30.
    CrossRef    
  23. Sweeney, J.J. and A.K. Burnham, 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull., 74: 1559-1570.
  24. Tissot, B., R. Pelet and P. Ungerer, 1987. Thermal history of sedimentary basins, maturation indices and kinetics of oil and gas generation. Am. Assoc. Petr. Geol. B., 71: 1445-1466.
  25. Vollset, J. and A.G. Dore, 1984. A revised Triassic and Jurassic lithostratigraphic Nomenclature for the Norwegian North Sea. Norw. Pet. Dir. Bull., 3: 2-53.
  26. Waples, D.W., 1994. Maturity Modeling: Thermal Indicators, Hydrocarbon Generation and Oil Cracking. In: Magoon, L.B. and Dow, W.G. (Eds.), the Petroleum System-from Source to Trap. American Association of Petroleum Geologists, Memoir, 60: 285-306.
  27. Zenella, E. and M.P. Coward, 2003. Structural Framework. In: Evans, D., C. Graham, A. Armour and P. Bathurst, (Eds.), The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea, pp: 45-59.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved