Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Solution of Two-dimensional Transient Heat Conduction in a Hollow Sphere under Harmonic boundary condition

M.A. Abdous and N. Moallemi
Department of Mechanical Engineering, Jask Branch, Islamic Azad University, Jask, Iran
Research Journal of Applied Sciences, Engineering and Technology  2014  21:4396-4403
http://dx.doi.org/10.19026/rjaset.7.815  |  © The Author(s) 2014
Received: August 29, 2012  |  Accepted: October 09, 2012  |  Published: June 05, 2014

Abstract

In this study, an analytical modeling of two dimensional heat conduction in a hollow sphere, subjected to time dependent periodic boundary condition at the inner and the outer surfaces, is performed. The thermo physical properties of the material are assumed to be isotropic and homogenous. Also, the effects of the temperature oscillations frequency on the boundaries, the thickness variation of the hollow sphere and thermo physical properties of the ambient and the sphere involved in some dimensionless numbers are studied. The results show that the obtained temperature distribution contains two characteristics, the dimensionless amplitude and the dimensionless phase difference. Comparison between the present results and the findings of the previous study as related to a two-dimensional solution of the hollow sphere subjected to the simple harmonic condition shows a good agreement.

Keywords:

Convective heat transfer, fourier transforms, sphere, transient heat conduction,


References

  1. Atefi, G. and M. Moghimi, 2006. A temperature Fourier series solution for a hollow sphere. J. Heat Transf., 128(9): 963-968.
    CrossRef    
  2. Atefi, G., M.A. Abdous, A. Ganjehkaviri and N. Moalemi, 2009. An analytical solution of a two-dimensional temperature field in a hollow cylinder under a time periodic boundary condition using Fourier series. P. I. Mech. Eng. C-J. Mec., 223(8): 1889-1901.
    CrossRef    
  3. Baïri, A. and N. Laraqi, 2003. Diagrams for fast transient conduction in sphere and long cylinder subject to sudden and violent thermal effects on its surface. Appl. Therm. Eng., 23(11): 1373-1390.
    CrossRef    
  4. Cossali, G.E., 2007. The heat storage capacity of a solid spherical body under general periodic thermal excitation. Int. Commun. Heat Mass, 34(6): 692-702.
    CrossRef    
  5. Cossali, G.E., 2009. Periodic heat conduction in a solid homogeneous finite cylinder. Int. J. Therm. Sci., 48(4): 722-732.
    CrossRef    
  6. Dincer, I., 1995a. Transient heat transfer analysis in air cooling of individual spherical products. J. Food Eng., 26(4): 453-467.
    CrossRef    
  7. Dincer, I., 1995b. Estimation of Dimensionless temperature distributions in spherical products during hydrocooling. Int. Commun. Heat Mass, 22(1): 123-131.
    CrossRef    
  8. Dincer, I., 1995c. Simplified solution for temperature distributions of spherical and cylindrical products during rapid air cooling. Energ. Convers. Manage., 36(12): 1175-1184.
    CrossRef    
  9. Khaled, A.R.A., 2008. Conduction heat and entropy transfer in a semi-infinite medium and wall with a combined periodic heat flux and convective boundary condition. Int. J. Therm. Sci., 47(1): 76-83.
    CrossRef    
  10. Khedari, J., P. Benigni, J. Rogez and J.C. Mathieu, 1995. New apparatus for thermal diffusivity of refractory solid materials by the periodic stationary method. Rev. Sci. Instrum., 66(1): 193-198.
    CrossRef    
  11. Khedari, J., G. Csurks and J. Hirunlabh, 1996. General analytical modeling of heat transfer in isotropic solid materials under periodic steady regime. Proceeding of the International Conference on Contribution of Cognition to Modeling (CCM'98), pp: 9.10-9.13.
  12. Lit, S.H., 1987. Periodic heat conduction through composite panels. J. Thermophys. Heat Tr., 1: 184-186.
    CrossRef    
  13. Ostrogorsky, A.G., 2008. Transient heat conduction in spheres for Fo < 0.3 and finite Bi. Heat Mass Transfer, 44(12): 1557-1562.
    CrossRef    
  14. Özisik, M.N., 1993. Heat Conduction. 2nd Edn., John Wiley, New York, pp: 195-201.
  15. Prashant, K.J., S. Suneet and Rizwan-uddin, 2010. An exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates. Int. J. Heat Mass Tran., 53(9-10): 2133-2142.
    CrossRef    
  16. Sengupta, A., M.A. Sodha, M.P. Verma and R.L. Sawhney, 1993. Periodic heat transfer through inhomogeneous media part 3: Hollow sphere. Int. J. Energ. Res., 17(4): 265-279.
    CrossRef    
  17. Stela, L.R.M., R.B.F. Celso and Z.E. da Silva, 2005. Transient conduction in spherical fruits: Method to estimate the thermal conductivity and volumetric thermal capacity. J. Food Eng., 67(3): 261-266.
    CrossRef    
  18. Suneet, S., K.J. Prashant and Rizwan-uddin, 2008. Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction. Int. J. Therm. Sci., 47(3): 261-273.
    CrossRef    
  19. Trostel, R., 1956. Instationäre Wärmespannungen in einer Hohlkugel. Ing. Arch., 24 (6): 373-391.
    CrossRef    
  20. Verein Deutscher Ingenieure, 2002. VDI-Wärmeatlas, Berechnungsblätter für den Wärme-übergang, 9. Auflage, VDI-Verlag, Düsseldorf, Germany.
  21. Youming, C., W. Shengwei and Z. Zheng, 2003. An approach to calculate transient heat flow through multilayer spherical structures. Int. J. Therm. Sci., 42(8): 805-812.
    CrossRef    
  22. Zudin, Y.B., 1995. Averaged heat transfer during periodic fluctuations of the heat transfer intensity of the surface of a plate, a cylinder, or a sphere. J. Eng. Phys. Thermophys., 68(2): 193-196.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved