Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


A Multi Response Optimization of Tool Pin Profile on the Tensile Behavior of Age-hardenable Aluminum Alloys during Friction Stir Welding

1D. Vijayan and 2V. Seshagiri Rao
1Department of Mechanical Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Enathur, Kanchipuram-631561, Tamilnadu, India
2St. Josephs College of Engineering, Chennai-600025, Tamilnadu, India
Research Journal of Applied Sciences, Engineering and Technology  2014  21:4503-4518
http://dx.doi.org/10.19026/rjaset.7.827  |  © The Author(s) 2014
Received: December 28, 2013  |  Accepted: January 10, 2014  |  Published: June 05, 2014

Abstract

The main aim of this study is to select a suitable tool pin profile to maximize the tensile behavior (Ultimate Tensile Strength and Tensile Elongation) of Friction stir welded aluminum alloys of AA 2024 and AA 6061. The age-hardnable aluminum alloys of 2xxx, 6xxx and 7xxx series are extensively used in automobile and aircraft industries because of its high strength to weight ratio, formability and ductility. These alloys are vulnerable to cracking (2xxx and 7xxx) and highly melt (6xxx) in conventional fusion welding techniques. Friction stir welding is an emerging solid state welding technique which is best suitable for joining these aluminum alloys. The influential process and tool parameters that are affecting the FS welded joints are such as tool rotational speed, welding speed, axial load and tool pin profile. Dissimilar friction stir welded joints of AA 2024 and AA 6061 aluminum alloys are fabricated using a friction stir welding process to examine the influence of the tool pin profiles on tensile properties on various crucial process parameters. A Box-Behnken design with four input parameters, three levels and 30 runs is used to conduct the experiments and Response Surface Method (RSM) is used to develop the mathematical model. The experimental results were predicted at the 95% confidence level. The macro defects in the welds and the modes of tensile fracture are discussed in detail to reveal the root cause of failure in the fabricated samples. The rotating tool equipped with a square pin generated the highest ultimate tensile strength (143 MPa) with a 12% elongation. A microstructure variation on dissimilar alloys which result 44% reduction in tensile strength on AA2024 and 51% reduction in tensile strength on AA6061 aluminum alloys was observed on the stir zones.

Keywords:

Aluminum, desirability, elongation, friction stir welding, optimization, response surface, tensile,


References

  1. Anish, K., K. Vinod and K. Jatinder, 2013. Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. Int. J. Adv. Manuf. Tech., 68(9-12): 2645-2668.
    CrossRef    
  2. ASM Handbook, 1990. Properties and Selection: Non Ferrous Alloys and Special Purpose Materials. ASM International, Vol. 2.
  3. Biswas, P., D.A Kumar and N.R. Mandal, 2012. Friction stir welding of aluminum alloy with varying tool geometry and process parameters. J. Eng. Manufacture, 226(4): 641-649.
    CrossRef    
  4. Da Silva, A.A.M., E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez and A. Echeverria, 2011. Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds. Mater. Des., 32(4): 2021-2027.
    CrossRef    
  5. Dawes, C. and W. Thomas, 1995. Friction stir joining of aluminium alloys. TWI Bull., 6: 124-127.
  6. Dehghani, M., S.A.A. Akbari Mousavi and A. Amadeh, 2013. Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld. T. Nonferr. Metal. Soc., 23(7): 1957-1965.
    CrossRef    
  7. Derringer, G. and R. Suich, 1980. Simulataneous optimization of several response variables. J. Qual. Technol., 12(4): 214-219.
  8. Design Expert, 2005. User Manual Reference-Stat-Ease, Inc., 2005.
  9. Elangovan, K., V. Balasubramanian and M. Valliappan, 2008. Influences of pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int. J. Adv. Manuf. Tech., 38(3-4): 285-294.
    CrossRef    
  10. Elmesalamy, A.S., L. Li, J.A. Francis and H.K. Sezer, 2013. Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels. Int. J. Adv. Manuf. Tech., 68: 1-17.
    CrossRef    
  11. Flores, O.V., C. Kennedy, L.E. Murr, D. Brown, S. Pappu and B.M. Nowak, 1998. Microstructural issues in a friction-stir-welded aluminum alloy. Scripta. Materialia., 38(5): 703-708.
    CrossRef    
  12. Hu, Z.L., X.S. Wang and S.J. Yuan, 2012. Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy. Mater. Charact., 73: 114-123.
    CrossRef    
  13. Hui-jie, Z., L. Hui-jie and Y. Lei, 2013. Thermal modeling of underwater friction stir welding of high strength aluminum alloy. T. Nonferr. Metal. Soc., 23(4): 1114-1122.
    CrossRef    
  14. Jayaraman, M. and V. Balasubramanian, 2013. Effect of process parameters on tensile strength of friction stir welded cast A356 aluminium alloy joints. T. Nonferr. Metal. Soc., 23(3): 605-615.
    CrossRef    
  15. Kalaiselvan, K. and N. Murugan, 2013. Role of friction stir welding parameters on tensile strength of AA6061-B4C composite joints. T. Nonferr. Metal. Soc., 23(3): 616-624.
    CrossRef    
  16. Karthikeyan, R. and V. Balasubramanian, 2010. Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. Int. J. Adv. Manuf. Tech., 51: 173-183.
    CrossRef    
  17. Kumar, K. and S.V. Kailas, 2008. On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy. Mater. Design., 29(4): 791-797.
    CrossRef    
  18. Kwon, J.W., M.S. Kang, S.O. Yoon, Y.J. Kwon, S.T. Hong, D.I. Kim, K.H. Lee, J.D. Seo, J.S. Moon and K.S. Han, 2012. Influence of tool plunge depth and welding distance on friction stir lap welding of AA5454-O aluminum alloy plates with different thicknesses. T. Nonferr. Metal. Soc., 22(3): 624- 628.
    CrossRef    
  19. Lakshminarayanan, A.K. and V. Balasubramanian., 2008. Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique. T. Nonferr. Metal. Soc., 18(3): 548-554.
    CrossRef    
  20. Lee, W.B., Y.M. Yeon and S.B. Jung, 2003. The improvement of mechanical properties of friction-stir-welded A356 Al alloy. Mater. Sci. Eng. A, 355(1-2): 154-159.
    CrossRef    
  21. Li, R.D., J.L. Li, J.T. Xiong, F.S. Zhang, K. Zhao and C.Z. Ji, 2012. Friction heat production and atom diffusion behaviors during Mg-Ti rotating friction welding process. T. Nonferr. Metal. Soc., 22(11): 2665-2671.
    CrossRef    
  22. Lomolino, S., R. Tovo and J. Dos Santos, 2005. On the fatigue behavior and design curves of friction stir butt welded Al alloys. Int. J. Fatigue, 27: 305-316.
    CrossRef    
  23. Mohammadtaheri, M., M. Haddad-Sabzevar, M. Mazinani and E. Bahrami Motlagh., 2013. The effect of base metal conditions on the final microstructure and hardness of 2024 aluminum alloy friction-stir welds. Metall. Mater. Trans. B, 44(3):738-743.
    CrossRef    
  24. Montgomery, D.C., 1980. Design and Analysis of Experiments. 4th Edn., Wiley, New York.
  25. Muhammad, N., Y.H.P. Manurung, R. Jaafar, S.K. Abas, G. Tham and E. Haruman, 2013. Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology. J. Intell. Manuf., 24: 1175-1183.
    CrossRef    
  26. Murr, L.E., G. Liu and J.C. Mc Clure, 1998. A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminum. J. Mater. Sci., 33(5): 1243-1251.
    CrossRef    
  27. Ouyang, J.H. and R. Kovacevic, 2002. Material flow and microstructure of the friction stir butt welds of the same and dissimilar aluminum alloys. J. Mater. Eng. Perform., 11(1): 51-63.
    CrossRef    
  28. Rajakumar, S. and V. Balasubramanian, 2012. Multi-response optimization of friction-stir-welded AA1100 aluminum alloy joints. J. Mater. Eng. Perform., 21: 809-822.
  29. Rhodes, C.G., M.W. Mahoney and W.H. Bingel, 1997. Effect of friction stir welding on microstructure of 7075 aluminium. Scripta Mater., 36: 69-75.
    CrossRef    
  30. Robert, L.M., F.G. Richard and L.H. James, 2003. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science. 2nd Edn., J. Wiley, Hoboken, N.J.
  31. Sanjay, K., K. Sudhir and K. Ajay, 2012. Optimization of process parameters for friction stir welding of joining A6061 and A6082 alloys by Taguchi method. J. Mech. Eng. Sci., 227(6): 1150-1163.
  32. Sato, Y.S., M. Urata, H. Kokawa and K. Ikeda, 2003. Hall-petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater. Sci. Eng., 354(1-2): 298-305.
    CrossRef    
  33. Sefika, K., 2013. Multi-response optimization using the Taguchi-based grey relational analysis: A case study for dissimilar friction stir butt welding of AA6082-T6/AA5754-H111. Int. J. Adv. Manuf. Tech., 68: 795-804.
    CrossRef    
  34. Shanmuga Sundaram, N. and N. Murugan, 2010. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Mater. Des., 31: 4184-4193.
    CrossRef    
  35. Srivatsan, T.S., V. Satish and P. Lisa, 2007. The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024. Mater. Sci. Eng., 466: 235-245.
    CrossRef    
  36. Su, J.Q., T.W. Nelson, R. Mishra and M. Mahoney 2003. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Materialia, 51(3): 713-729.
    CrossRef    
  37. Thomas, W.M., E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith and C.J. Dawes, 1991. Patent. 9125978.8.
  38. Ying, L., E A. Trillo and L.E. Murr, 2000. Friction-stir welding of aluminum alloy 2024 to silver. J. Mater. Sci. Lett., 19: 1047-1051.
    CrossRef    
  39. Zhang, H.W., Z. Zhang and J.T. Chen, 2005. The finite element simulation of the friction stir welding process. Metall. Mater. Trans. A, 403: 305-316.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved