Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Particle Swarm Optimization Recurrent Neural Network Based Z-source Inverter Fed Induction Motor Drive

1R. Selva Santhose Kumar and 2S.M. Girirajkumar
1Department of Electrical and Electronics Engineering, M.A.M College of Engineering
2Department of Instrumentation and Control Engineering, Saranathan College of Engineering, Thiruchirappalli, India
Research Journal of Applied Sciences, Engineering and Technology  2014  23:4973-4985
http://dx.doi.org/10.19026/rjaset.7.889  |  © The Author(s) 2014
Received: January 27, 2014  |  Accepted: April ‎09, ‎2014  |  Published: June 20, 2014

Abstract

In this study, the proposal is made for Particle Swarm Optimization (PSO) Recurrent Neural Network (RNN) based Z-Source Inverter Fed Induction Motor Drive. The proposed method is used to enhance the performance of the induction motor while reducing the Total Harmonic Distortion (THD), eliminating the oscillation period of the stator current, torque and speed. Here, the PSO technique uses the induction motor speed and reference speed as the input parameters. From the input parameters, it optimizes the gain of the PI controller and generates the reference quadrature axis current. By using the RNN, the reference three phase current for accurate control pulses of the voltage source inverter is predicted. The RNN is trained by the input motor actual quadrature axis current and the reference quadrature axis current with the corresponding target reference three phase current. The training process utilized the supervised learning process. Then the proposed technique is implemented in the MATLAB/SIMULINK platform and the effectiveness is analyzed by comparing with the other techniques such as PSO-Radial Biased Neural Network (RBNN) and PSO-Artificial Neural Network (ANN). The comparison results demonstrate the superiority of the proposed approach and confirm its potential to solve the problem.

Keywords:

ANN, PSO, RBNN, RNN, Z-source inverter,


References

  1. Abdelsalam, A.K., M.I. Masoud, S.J. Finney and B.W. Williams, 2011. Vector control PWM-VSI induction motor drive with a long motor feeder: Performance analysis of line filter networks. IET Electr. Power App., 5(5): 443-456.
    CrossRef    
  2. Ali, U.S. and V. Kamaraj, 2011. Double carrier pulse width modulation control of Z-source inverter. Eur. J. Sci. Res., 49(2): 168-176.
  3. Bashi, S.M., I. Aris and S.H. Hamad, 2005. Development of single phase induction motor adjustable speed control using M68HC11E-9 microcontroller. J. Appl. Sci., 5(2): 249-252.
    CrossRef    
  4. Dehghan, S.M., M. Mohamadian, A. Yazdian and F. Ashrafzadeh, 2010. A dual-input-dual-output Z-source inverter. IEEE T. Power Electr., 25(2): 360-368.
    CrossRef    
  5. Ellabban, O., J.V. Mierlo and P. Lataire, 2012. A DSP-based dual-loop peak DC-link voltage control strategy of the Z-source inverter. IEEE T. Power Electr., 27(9): 4088-4097.
    CrossRef    
  6. Gao, F., P.C. Loh, F. Blaabjerg and C.J. Gajanayake, 2008. Operational analysis and comparative evaluation of embedded Z-Source inverters. Proceeding of IEEE Power Electronics Specialists Conference (PESC, 2008), pp: 2757-2763.
  7. Husodo, B.Y., M. Anwari, S.M. Ayob and Taufik, 2010. Analysis and simulations of Z-source inverter control methods. Proceeding of IPEC Conference 2010, pp: 699-704.
    CrossRef    
  8. Loh, P.C., F. Gao and F. Blaabjerg, 2010. Embedded EZ-source inverters. IEEE T. Ind. Appl., 46(1): 256-267.
    CrossRef    
  9. Meenakshi, T. and K. Rajambal, 2010. Identification of an effective control scheme for Z-source inverter. APEJ J., 4(1): 22-28.
  10. Nguyen, M., Y. Lim and S. Park, 2013. Improved trans-Z-source inverter with continuous input current and boost inversion capability. IEEE T. Power Electr., 28(10): 4500-4510.
    CrossRef    
  11. Peng, F.Z., 2003. Z-source inverter. IEEE T. Ind. Appl., 39(2): 504-510.
    CrossRef    
  12. Raghu, T., J.S. Rao and S.C. Sekhar, 2012. Simulation of sensorless speed control of induction motor using APFO technique. Int. J. Comput. Electr. Eng., 4(4): 440-444.
    CrossRef    
  13. Saravanan, V., R. Ramanujam and M. Arumugam, 2012. Switched quasi Z source inverters with extended boost capability. Eur. J. Sci. Res., 68(3): 440-452.
  14. Sasikumar, M. and S.C. Pandian, 2010. Implementation and characteristics of induction generator fed three level ZSI for wind energy conversion scheme. Int. J. Adv. Eng. Sci. Technol., 1(1): 52-57.
  15. Shahparasti, M., A. Yazdian, M. Mohamadian, A.S. Larijani and A. Fatemi, 2012. Parallel uninterruptible power supplies based on Z-source inverters. IET Power Electron., 5(8): 1359-1366.
    CrossRef    
  16. Shen, M., J. Wang, A. Joseph, F.Z. Peng, L.M. Tolbert and D.J. Adams, 2006. Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE T. Ind. Appl., 42(3): 770-778.
    CrossRef    
  17. Sutar, A.R., S.R. Jagtap and J. Tamboli, 2012. Performance analysis of Z-source inverter fed induction motor drive. Int. J. Sci. Eng. Res., 3(5): 1-6.
  18. Tang, Y., S. Xie, C. Zhang and Z. Xu, 2009. Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability. IEEE T. Power Electr., 24(2): 409-415.
    CrossRef    
  19. Thangaprakash, S. and A. Krishnan, 2009. Modified space vector pulse width modulation for Z-source inverters. Int. J. Recent Trends Eng., 2(6): 136-138.
  20. Thangaprakash, S. and A. Krishnan, 2010. Current mode integrated control technique for Z-source inverter fed induction motor drives. J. Power Electron., 10(3): 285-292.
    CrossRef    
  21. Tripura, P. and Y.S.K. Babu, 2011. Fuzzy logic speed control of three phase induction motor drive. World Acad. Sci. Eng. Technol., 60: 1371-1375.
  22. Yu, Y., Q. Zhang, B. Liang and S. Cui, 2011. Single-phase Z-source inverter: Analysis and low-frequency harmonics elimination pulse width modulation. Proceeding of IEEE Energy Conversion Congress and Exposition (ECCE, 2011), pp: 2260-2267.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved