Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Design and Analysis of Sliding Mode Controller and Simplified Space Vector Modulation for Three Phase Shunt Active Power Filter

1S. Elangovan, 2K. Thanushkodi and 2P.N. Neelakantan
1Department of EEE
2Department of Electrical Sciences, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu 642109, India
Research Journal of Applied Sciences, Engineering and Technology  2014  4:548-555
http://dx.doi.org/10.19026/rjaset.8.1004  |  © The Author(s) 2014
Received: April ‎08, ‎2014  |  Accepted: May ‎19, ‎2014  |  Published: July 25, 2014

Abstract

The main aim of this study is to control a multivariable coupled system by choosing sliding mode switching function. A Sliding mode control approach is developed to control a three phase three wire voltage source inverter operating as a shunt active power filter. Hence, no need to divide the system model developed in the synchronous ‘dq’ reference frame into two separate loops. Furthermore, the proposed control strategy allows a better stability and robustness over a wide range of operation. When sine PWM is used for generation of pulses for the switches, a variable switching nature is exhibited. The pulses for the active filter are fed by a Space Vector Modulation in order to have a constant switching of converter switches. But, the conventional space vector modulation, if implemented practically, needs a complicated algorithm which uses the trigonometric functions such as arctan, Sine and Cosine functions which in turn needs look up tables to store the pre-calculated trigonometric values. In this study, a very simplified algorithm is proposed for generating Space vector modulated pulse for all six switches without the use of look up tables and only by sensing the voltages and currents of the voltage source inverter acting as shunt active filter. The simulation using PSIM and MATLAB software verifies the results very well.

Keywords:

Pulse width modulation, shunt active power filter, sliding mode control, space vector modulation,


References

  1. Akagi, H., 1994. Trends in active power line conditioners. IEEE T. Power Electr., 9(3): 263-268.
    CrossRef    
  2. Bhende, C.N., S. Mishra and S.K. Jain, 2006. TS-fuzzy-controlled active power filter for load compensation. IEEE T. Power Deliver., 21(3): 1459-1465.
    CrossRef    
  3. Chang, G.W. and T.C. Shee, 2004. A novel reference compensation current strategy for shunt active power filter control. IEEE T. Power Deliver., 19(4): 1751-1758.
    CrossRef    
  4. DeCarlo, R.A., S.H. Zak and G.P. Mathews, 1988. Variable structure control of nonlinear multivariable systems: A tutorial. P. IEEE, 76(3): 212-232.
    CrossRef    
  5. Elangovan, S., V. Prasanna Moorthy, K. Baskaran and A. Ebenezer Jeyakumar, 2005. Design and analysis of sliding mode controller for shunt active power filter. Proceeding of the National Conference in Power Electronics and Drives. A.C. College and Tech., Karaikudi, pp: 108-111.
  6. Elangovan, S., K. Rajambal, C. Chellamuthu and S. Meenakshi, 2006. Intelligent controller for a stand-alone hybrid generation system. Proceeding of the IEEE Power India Conference, New Delehi.
  7. Hua, C.C., C.H. Li and C.S. Lee, 2009. Control analysis of an active power filter using Lyapunov candidate. IET Power Electron., 2(4): 325-334.
    CrossRef    
  8. Ioannou, P.A. and J. Sun, 1995. Robust Adaptive Control. Prentice Hall, Englewood Cliffs, NJ, USA.
  9. Jou, H.L., J.C. Wu, Y.J. Chang and Y.T. Feng, 2005. A novel active power filter for harmonic suppression. IEEE T. Power Deliver., 20(2): 1507-1513.
    CrossRef    
  10. Komucugil, H. and O. Kukrer, 2006. A new control strategy for single-phase shunt active power filters using a Lyapunov function. IEEE T. Ind. Electron., 53(1): 305-312.
    CrossRef    
  11. Ma, H., Y. Lang and H. Chen, 2004. A simplified algorithm for space vector modulation of three phase voltage source PWM rectifier. Proceeding of the 35th Annual IEEE Power Electronics Specialist Conference, Aachen, Germany.
    CrossRef    
  12. Marconi, L., F. Ronchi and A. Tilli, 2007. Robust nonlinear control of shunt active filters for harmonic current compensation. Automatica, 43(2): 252-263.
    CrossRef    
  13. Matas, J., L. Garcia de Vicuna, J. Miret, J.M. Guerrero and M. Castilla, 2008. Feedback linearization of a single-phase active power filter via sliding mode control. IEEE T. Power Electr., 23(1): 116-125.
    CrossRef    
  14. Mendalek, N. and K. Al-Haddad, 2000. Modeling and nonlinear control of shunt active power filter in the synchronous reference frame. Proceeding of the 9th International Conference on Harmonics and Quality of Power, (ICHQP'2000), pp: 30-35.
    CrossRef    
  15. Montero, M.I.M., E.R. Cadaval and F.B. Gonz’alez, 2007. Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE T. Power Electr., 22(1): 229-236.
    CrossRef    
  16. Pereira, R.R., C.H. Da Silva, L.E.B. Da Silva, G. Lambert-Torres and J.O.P. Pinto, 2011. New strategies for application of adaptive filters in active power filters. IEEE T. Ind. Appl., 47(3): 1136-1141.
    CrossRef    
  17. Rahmani, S., N. Mendalek and K. Al-Haddad, 2010. Experimental design of a nonlinear control technique for three-phase shunt active power filter. IEEE T. Ind. Electron., 57(103364): 3375.
    CrossRef    
  18. Ramos-Carranza, H.A., A. Medina and G.W. Chang, 2008. Real-time shunt active power filter compensation. IEEE T. Power Deliver., 23(4): 2623-2625.
    CrossRef    
  19. Ribeiro, D., R. Azevedo and C. Sousa, 2012. A robust adaptive control strategy of active power filters for power-factor correction, harmonic compensation and balancing of nonlinear loads. IEEE T. Power Electr., 27(2): 718-730.
    CrossRef    
  20. Sabanovic-Behlilovic, N., T. Ninomiya, A. Sabanovic and B. Perunicic, 1993. Control of three-phase switching converters: A sliding mode approach. Proceeding of the 24th Annual IEEE Power Electronics Specialists Conference (PESC '93). Record., Seattle, WA, pp: 630-635.
    CrossRef    
  21. Shyu, K.K., M.J. Yang, Y.M. Chen and Y.F. Lin, 2008. Model reference adaptive control design for a shunt active-power-filter system. IEEE T. Ind. Electron., 55(1): 97-106.
    CrossRef    
  22. Singh, B., I.C. Al-Haddad and A. Chandra, 1999. A review of active filters for power quality improvement. IEEE T. Ind. Electron., 46(5): 960-971.
    CrossRef    
  23. Singh, G.K., A.K. Singh and R. Mitra, 2007. A simple fuzzy logic based robust active power filter for harmonics minimization under random load variation. Electr. Pow. Syst. Res., 77(8): 1101-111.
    CrossRef    
  24. The Matlab Mathworks, 2000. Power System Blockset: User's Guide. Version 2.1.
    Direct Link
  25. Utkin, V.I. and W. Li, 1992. Sliding Modes in Control Optimization. Springer-Verlag, NY.
    CrossRef    
  26. Valdez, A.A., G. Escobar and R. Ortega, 2009. An adaptive controller for the shunt active filter considering a dynamic load and the line impedance. IEEE T. Contr. Syst. T., 17(2): 458-464.
    CrossRef    
  27. Zhang, G. and Z. Xu, 2001. Study and simulation of the space vector PWM of unbalanced voltage. Proceeding of the Electrotechnics Technology.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved