Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Spectroscopic Investigation of Pyruvate Formate Lyase-activating Enzyme: A Look into EPR, ENDOR and Mossabuer Spectroscopy

1Danilo O. Ortillo and 2Joan B. Broderick
1Department of Chemistry, University of the Philippines Visayas, 5023 Miagao, Iloilo, Philippines
2Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry Building, P.O. Box 173400, Bozeman, MT 59717, USA
Research Journal of Applied Sciences, Engineering and Technology  2014  9:1075-1097
http://dx.doi.org/10.19026/rjaset.8.1072  |  © The Author(s) 2014
Received: April ‎08, ‎2014  |  Accepted: April ‎28, ‎2014  |  Published: September 05, 2014

Abstract

Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR) spectroscopies are extremely powerful and versatile methods for the characterization of paramagnetic systems in biology, chemistry and physics. For iron centers in the radical SAM enzymes however, Mössbauer spectroscopy has proven to be both powerful and useful as a complementary spectroscopic technique in determining not just the oxidation states but also the type of iron species present in the catalytic center. The cluster content of the radical SAM protein, Pyruvate Formate-Lyase-Activating Enzyme (PFL-AE), was characterized using EPR and Mössbauer techniques while additional ENDOR analysis helped determine the novel interaction of the co-substrate, S- Adenosylmethionine (SAM or AdoMet) with the Fe-S cluster of PFL-AE. The anchoring role of the Fe-S cluster to the co-substrate derived from the spectroscopic data supports the mechanism where a SAM-based radical species is involved during catalysis.

Keywords:

AdoMet , pyruvate formate-lyase-activating enzyme , radical SAM , spectroscopic methods,


References

  1. Abragam, A. and B. Bleaney, 1986. Electron Paramagnetic Resonance of Transition Ions. Dover Publications, New York.
  2. Beinert, H., 2000. Iron-sulfur proteins: Ancient structures, still full of surprises. J. Biol. Inorg. Chem., 5(1): 2-15.
    CrossRef    PMid:10766431    
  3. Berg, J.M. and R.H. Holm, 1982. Structures and Reactions of Iron-sulfur Protein Clusters and their Synthetic Analogues. In: Spiro, T.G. (Ed.), Iron-sulfur Proteins. John Wiley and Sons Inc., New York, pp: 1-66.
  4. Broderick, J.B., T.F. Henshaw, J. Cheek, K. Wojtuszewski, S.R. Smith, M.R. Trojan, R.M. McGhan, A. Kopf, M. Kibbey and W.E. Broderick, 2000. Pyruvate formate-lyase-activating enzyme: Strictly anaerobic isolation yields active enzyme containing a [3Fe-4S]+ cluster. Biochem. Bioph. Res. Co., 269(2): 451-456.
    CrossRef    PMid:10708574    
  5. Cheek, J. and J.B. Broderick, 2001. Adenosylmethionine- dependent iron-sulfur enzymes: Versatile clusters in a radical new role. J. Biol. Chem., 6(3): 209-226.
    CrossRef    
  6. Conradt, H., M. Hohmann-Berger, H.P. Hohmann, H.P. Blaschkowski and J. Knappe, 1984. Pyruvate formate-lyase (inactive form) and pyruvate formate-lyase activating enzyme of Escherichia coli: Isolation and structural properties. Arch. Biochem. Biophys., 228(1):133-142.
    CrossRef    
  7. Daley, C.J.A. and R.H. Holm, 2001. Reactivity of [Fe4S4(SR)4]2-,3- clusters with Sulfonium Cations:?Analogue reaction systems for the initial step in biotin synthase catalysis. Inorg. Chem., 40(12): 2785-2793.
    CrossRef    PMid:11375696    
  8. Daley, C.J.A. and R.H. Holm, 2003. Reactions of site-differentiated [Fe4S4]2+,1+ clusters with sulfonium cations: Reactivity analogues of biotin synthase and other members of the S-adenosylmethionine enzyme family. J. Inorg. Biochem., 97(3): 287-298.
    CrossRef    
  9. DeRose, V.J. and B.M. Hoffman, 1995. Protein structure and mechanism studied by electron nuclear double resonance spectroscopy. Method. Enzymol., 246: 554-589.
    CrossRef    
  10. Doan, P.E. and B.M. Hoffman, 1997. Making hyperfine selection in Mims ENDOR independent of deadtime. Chem. Phys. Lett., 269(3-4): 208-214.
    CrossRef    
  11. Drago, R.S., 1977. Physical Methods in Chemistry. Saunders College Publishing, Orlando.
  12. Fann, Y.C., N.C. Gerber, P.A. Osmulski, L.P. Hager, S.G. Sligar and B.M. Hoffman, 1994. ENDOR determination of Heme ligation in chloroperoxidase and comparison with cytochrome P-450Cam. J. Am. Chem. Soc., 116(13): 5989-5990.
    CrossRef    
  13. Ferreira, G.C., R. Franco, S.G. Lloyd, A.S. Pereira, I. Moura, J.J. Moura and B.H. Huynh, 1994. Mammalian ferrochelatase: A new addition to the metalloenzyme family. J. Biol. Chem., 269(10): 7062-7065.
    PMid:8125912    
  14. Frey, P.A., 2001. Radical mechanisms of enzymatic catalysis. Annu. Rev. Biochem., 70: 121-148.
    CrossRef    PMid:11395404    
  15. Girerd, J.J., G.C. Papaefthymiou, A.D. Watson, E. Gamp, K.S. Hagen, N. Edelstein, R.B. Frankel and R.H. Holm, 1984. Electronic properties of the linear antiferromagnetically coupled clusters [Fe3S-4(SR)4]3-, structural isomers of the iron-sulfur (1+) ([Fe3S4]1+) unit in iron-sulfur proteins. J. Am. Chem. Soc., 106(20): 5941-5947.
    CrossRef    
  16. Gurbiel, R.J., P.E. Doan, G.T. Gassner, T.J. Macke, D.A. Case, T. Ohnishi, J.A. Fee, D.P. Ballou and B.M. Hoffman, 1996. Active site structure of rieske-type proteins: Electron nuclear double resonance studies of isotopically labeled phthalate dioxygenase from Pseudomonas cepacia and Rieske protein from Rhodobacter capsulatus and molecular modeling studies of a Rieske center. Biochemistry, 35(24): 7834-7845.
    CrossRef    PMid:8672484    
  17. Hagen, K.S., J.G. Reynolds and R.H. Holm, 1981. Definition of reaction sequences resulting in self-assembly of [Fe4S4(SR)4]2-clusters from simple reactants. J. Am. Chem. Soc., 103: 4054-4063.
    CrossRef    
  18. Henshaw, T.F., J. Cheek and J.B. Broderick, 2000. The [4Fe-4S]1+cluster of pyruvate formate-lyase activating enzyme generates the glycyl radical on pyruvate formate-lyase: EPR-detected single turnover. J. Am. Chem. Soc., 122(34): 8331-8332.
    CrossRef    
  19. Hoffmann, B.M., 2003. ENDOR of metalloenzymes. Acc. Chem. Res., 36(7): 522-529.
    CrossRef    PMid:12859213    
  20. Holm, R.H., 1992. Trinuclear cuboidal and heterometallic cubane-type iron-sulfur clusters: New structural and reactivity themes in chemistry and biology. Adv. Inorg. Chem., 38: 1-71.
    CrossRef    
  21. Hutchison, C.A. and D.B. McKay, 1977. The determination of hydrogen coordinates in lanthanum nicotinate dihydrate crystals by Nd+3-proton double resonance. J. Chem. Phys., 66(8): 3311-3330.
    CrossRef    
  22. Huynh, B.H. and T.A. Kent, 1984. Mössbauer studies of iron proteins. Adv. Inorg. Biochem., 6: 163-223.
    PMid:6100155    
  23. Kennedy, M.C., T.A. Kent, M. Emptage, H. Merkle, H. Beinert and E. Münck, 1984. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase. J. Biol. Chem., 259(23): 14463-14471.
    PMid:6094558    
  24. Kennedy, M.C., M. Werst, J. Telser, M.H. Emptage, H. Beinhert and B.M. Hoffman, 1987. Mode of substrate carboxyl binding to the [4Fe-4S]+ cluster of reduced aconitase as studied by 17O and 13C Electron-nuclear double resonance spectroscopy. P. Natl. Acad. Sci. USA, 84(24): 8854-8858.
    CrossRef    PMid:3480514 PMCid:PMC299649    
  25. Knappe, J., H.P. Blaschkowski, P. Gröbner and T. Schmitt, 1974. Pyruvate formate-lyase of Escherichia coli: The acetyl-enzyme intermediate. Eur. J. Biochem., 50(1): 253-263.
    CrossRef    PMid:4615902    
  26. Knappe, J., S. Elbert, M. Frey and A.F. Wagner, 1993. Pyruvate formate-lyase mechanism involving the protein-based glycyl radical. Biochem. Soc. T., 21(3): 731-734.
    CrossRef    PMid:8135930    
  27. Krebs, C., T.F. Henshaw, J. Cheek, B.H. Huynh and J.B. Broderick, 2000. Conversion of 3Fe-4S to 4Fe-4S clusters in native pyruvate formate-lyase activating enzyme: Mössbauer characterization and implications for mechanism. J. Am. Chem. Soc., 122(50): 12497-12506.
    CrossRef    
  28. Külzer, R., T. Pils, R. Kappl, J. Hüttermann and J. Knappe, 1998. Reconstitution and characterization of the polynuclear iron-sulfurcluster in pyruvate formate-lyase-activating enzyme. J. Biol. Chem., 273(9): 4897-4903.
    CrossRef    PMid:9478932    
  29. Lee, H.I., B.J. Hales and B.M. Hoffman, 1997. Metal-Ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by 57Fe Q-band ENDOR. J. Am. Chem. Soc., 119(47): 11395-11400.
    CrossRef    
  30. Lowe, D.J., 1995. ENDOR and EPR of Metalloproteins. R.G. Landes Co., Austin.
  31. Manikandan, P., E.Y. Choi, R. Hille and B.M. Hoffman, 2001. 35 GHz ENDOR characterization of the "Very Rapid" signal of Xanthine Oxidase reacted with 2-hydroxy-6-methylpurine (13C8): Evidence against direct Mo-C8 interaction. J. Am. Chem. Soc., 123(11): 2658-2663.
    CrossRef    PMid:11456936    
  32. Middleton, P., D.P.E. Dickson, C.E. Johnson and J.D. Rush, 1978. Interpretation of the mossbauer spectra of the four-iron ferredoxin from Bacillus stenrothermophilus. Eur. J. Biochem., 88(1): 135-141.
    CrossRef    PMid:668704    
  33. Middleton, P., D.P.E. Dickson, C.E. Johnson and J.D. Rush, 1980. Interpretation of the mossbauer spectra of the high-potential iron protein from Chromatium. Eur. J. Biochem., 104(1): 289-296.
    CrossRef    PMid:6245869    
  34. Murphy, D.M. and R.D. Farley, 2006. Principles and applications of ENDOR spectroscopy for structure determination in solution and disordered matrices. Chem. Soc. Rev., 35: 249-268.
    CrossRef    PMid:16505919    
  35. Palmer, G., 2000. Electron Paramagnetic Resonance of Metalloproteins. In: Que, L. Jr. (Ed.), Physical Methods in Bioinorganic Chemistry, University Science Books, Sausalito, CA (USA), pp: 121-186.
  36. Ragle, J.L., M. Mokarram, D. Presz and G. Minott, 1975. Quadrupole coupling of deuterium bonded to carbon. J. Magn. Reson., 20(2): 195-213.
    CrossRef    
  37. Rocklin, A.M., D.L. Tierney, V. Kofman, N.M.W. Brunhuber, B.M. Hoffman, R.E. Christofferson, N.O. Reich, J.D. Lipscomb and L. Que, Jr., 1999. Role of the nonheme Fe (II) center in the biosynthesis of the plant hormone ethylene. P. Natl. Acad. Sci. USA, 96(14): 7905-7909.
    CrossRef    PMid:10393920 PMCid:PMC22160    
  38. Schünemann, V. and H. Winkler. 2000. Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep. Prog. Phys., 63: 263-353.
    CrossRef    
  39. Schweiger, A., 1991. Pulsed electron spin resonance spectroscopy: Basic principles, techniques and examples of applications. Angew. Chem. Int. Edit., 30: 265-292.
    CrossRef    
  40. Sofia, H.J., G. Chen, B.G. Hetzler, J.F. Reyes-Spindola and N.E. Miller, 2001. Radical SAM, a novel protein super family linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res., 29(5): 1097-1106.
    CrossRef    PMid:11222759 PMCid:PMC29726    
  41. Trautwein, A.X., E. Bill, E.L. Bominaar and H. Winkler, 1991. Iron-containing proteins and related analogs-complementary Mössbauer, EPR and magnetic susceptibility studies. Struct. Bond. (Berlin), 78: 1-95.
    CrossRef    
  42. Wagner, A.F., M. Frey, F.A. Neugebauer, W. Schäfer and J. Knappe, 1992. The free radical in pyruvate formate-lyase is located on glycine-734. P. Natl. Acad. Sci. USA, 89(3): 996-1000.
    CrossRef    PMid:1310545 PMCid:PMC48372    
  43. Walsby, C.J., D. Ortillo, W.E. Broderick, J.B. Broderick and B.M. Hoffman, 2002b. An anchoring role for FeS clusters: Chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc., 124(38): 11270-11271.
    CrossRef    PMid:12236732    
  44. Walsby, C.J., W. Hong, W.E. Broderick, J. Cheek, D. Ortillo, J.B. Broderick and B.M. Hoffman, 2002a. Electron-nuclear double resonance spectroscopic evidence that s-adenosylmethionine binds in contact with the catalytically active [4Fe-4S]+ cluster of pyruvateformate-lyase activating enzyme. J. Am. Chem. Soc., 124(12): 3143-3151.
    CrossRef    PMid:11902903    
  45. Werst, M.M., M.C. Kennedy, H. Beinert and B.M. Hoffman, 1990. Oxygen-17, proton and deuterium electron nuclear double resonance characterization of solvent, substrate and inhibitor binding to the iron-sulfur [4Fe-4S]+ cluster of aconitase. Biochemistry, 29(46): 10526-10532.
    CrossRef    PMid:2176871    
  46. Wong, K.K., B.W. Murray, S.A. Lewisch, M.K. Baxter, T.W., L. Ulissi-DeMario and J.W. Kozarich, 1993. Molecular properties of pyruvate-formate lyase activating enzyme. Biochemistry, 32(51): 14102-14110.
    CrossRef    PMid:8260492    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved