Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Spectroscopic Analysis of Structural Transformation in Biodiesel Degradation

N. Saifuddin and H. Refal
Centre of Renewable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
Research Journal of Applied Sciences, Engineering and Technology  2014  9:1149-1159
http://dx.doi.org/10.19026/rjaset.8.1079  |  © The Author(s) 2014
Received: ‎June ‎17, ‎2014  |  Accepted: July ‎19, ‎2014  |  Published: September 05, 2014

Abstract

The vegetable oil, fats and their biodiesel suffer with the drawback of deterioration of its quality during long term storage unlike petroleum diesel. The oxidation and thermal stability of two biodiesels of different origins, viz. palm oil derived biodiesel and used cooking oil based biodiesel were analyzed. The structural transformation of Fatty Acid Methyl Ester (FAME) of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer. The infrared spectra of the samples were recorded by FTIR spectroscopy. The absorbance values of the spectrum bands were observed and it was determined that some of the chemical groups of oxidized oils caused changes in absorbance. The spectroscopic data of degraded biodiesel suggested oxidative polymerization. The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs. Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance. In this study, in order to increase the stability of biodiesel, against oxidation process during the storage and distribution, different percentages (0.02, 0.05, 0.1 and 0.2% (w/v), respectively) of caffeic acid, were added as natural antioxidants. The antioxidant effect increased with concentration up to an optimal level. Above the optimal level, the increase in antioxidant effect with its concentration was relatively small.

Keywords:

Antioxidants, FTIR, microwave irradiation , oxidative and thermal degradation , structural transformation , used frying oil,


References

  1. Azadmard-Damirchi, S. and P.C. Dutta, 2008. Changes in minor lipid components during trasesterification. Lipid Technol., 20(12): 273-275.
    CrossRef    
  2. Bannister, C.D., H.M. Ali and J.G. Hawley, 2012. Investigation and analysis into the impact of rapeseed methyl ester biodiesel on the diesel oxidation catalyst performance. P. I. Mech. Eng. D-J. Aut., 226(D11): 1525-1535.
  3. Bannister, C.D., C.J. Chuck, M. Bounds and J.G. Hawley, 2011. Oxidative stability of biodiesel fuel. P. I. Mech. Eng. D-J. Aut., 225(D1): 99-114.
  4. Barnard, T.M., N.E. Leadbeater, M.B. Boucher, L.M. Stencel and B.A. Wilhite, 2007. Continuous-flow preparation of biodiesel using microwave heating. Energ. Fuel., 21(3): 1777-1781.
    CrossRef    
  5. Bashir, M.R., M.H. Guido, J.F.V. Wim and B. Aalt, 2004. The extraordinary antioxidant activity of vitamin E phosphate. Biochim. Biophys. Acta, 1683: 16-21.
    CrossRef    PMid:15238215    
  6. Bondioli, P., A. Gasparoli, A. Lanzani, E. Fedeli, S. Veronese and M. Sala, 1995. Storage stability of biodiesel. J. Am. Oil Chem. Soc., 2(6): 699-702.
    CrossRef    
  7. Boskou, D., 2006. Sources of natural phenolic antioxidants. Trends Food Sci. Tech., 17: 505-512.
    CrossRef    
  8. Caramit, R.P., A.G. de Freitas Andrade, J.B.G. de Souza, T.A. de Araujo, L.H. Viana, M.A.G. Trindade and V.S. Ferreira, 2013. A new voltammetric method for the simultaneous determination of the antioxidants TBHQ and BHA in biodiesel using multi-walled carbon nanotube screen-printed electrodes. Fuel, 105: 306-313.
    CrossRef    
  9. Chen, Y.H. and Y.M. Luo, 2011. Oxidation stability of biodiesel derived from free fatty acids associated with kinetics of antioxidants. Fuel Process. Technol., 92(7): 1387-1393.
    CrossRef    
  10. Conceição, M.M., V.J. Fernandes Jr., A.S. Araújo, M.F. Farias, I.M.G. Santos and A.G. Souza, 2007. Thermal and oxidative degradation of castor oil biodiesel. Energ. Fuel., 21: 1522-1527.
    CrossRef    
  11. Demirbas, A., 2002. Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energ. Source., 24(9): 835-841.
    CrossRef    
  12. Demirbas, A., 2007. Progress and recent trends in biofuels. Prog. Energ. Combust., 33(1): 1-18.
    CrossRef    
  13. Di Blasi, C., C. Branca and A. Galgano, 2007. Flame retarding of wood by impregnation with boric acid: Pyrolysis products and char oxidation rates. Polym. Degrad. Stabil., 92: 752-764.
    CrossRef    
  14. Encinar, J.M., J.F. Gonzálezand A. Rodríguez-Reinares, 2005. Biodiesel from used frying oil: Variables affecting the yields and characteristics of the biodiesel. Ind. Eng. Chem. Res., 44: 5491-5499.
    CrossRef    
  15. Erhan, S.Z., B.K. Sharma and J.M. Perez, 2006. Oxidation and low temperature stability of vegetable oil based lubricants. Ind. Crop. Prod., 24(2): 292-299.
    CrossRef    
  16. Fazal, M.A., A.S.M.A. Haseeb and H.H. Masjuki, 2010. Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Process. Technol., 91: 1308-1315.
    CrossRef    
  17. Fazal, M.A., A.S.M.A. Haseeb and H.H. Masjuki, 2011. Biodiesel feasibility study: An evaluation of material compatibility, performance, emission and engine durability. Renew. Sust. Energ. Rev., 15: 1314-1324.
    CrossRef    
  18. Frame, E. and R.L. McCormick, 2005. Elastomer compatibility testing of renewable diesel fuels. Technical Report NREL/TP-540-38834. National Renewable Energy Laboratory, Retrieved from: ww.nrel.gov/vehiclesandfuels/npbf/pdfs/38834.pdf.
  19. Geller, D.P., T.T. Adams, J.W. Goodrum and J. Pendergrass, 2008. Storage stability of poultry fat and diesel fuel mixtures: Specific gravity and viscosity. Fuel, 87: 92-102.
    CrossRef    
  20. Guillén, M.D. and A. Ruiz, 2005. Study by proton nuclear magnetic resonance of the thermal oxidation of oils rich in oleic acyl groups. J. Am. Oil Chem. Soc., 82: 349-355.
    CrossRef    
  21. Haseeb, A.S.M.A., H.H. Masjuki, L.J. Ann and M.A. Fazal, 2010. Corrosion characteristics of copper and related bronze in palm biodiesel. Fuel Process. Technol., 91: 329-334.
    CrossRef    
  22. Haseeb, A.S.M.A., T.S. Jun, M.A. Fazal and H.H. Masjuki, 2011. Degradation of physical properties of different elastomers upon exposure to palm biodiesel. Energy, 36: 1814-1819.
    CrossRef    
  23. Ivanoiu, A., A. Schmidt, F. Peter, L.M. Rusnac and M. Ungurean, 2011. Comparative study on biodiesel synthesis from different vegetables oils. Chem. Bull., 56: 94-98.
  24. Jain, S. and M.P. Sharma, 2011. Oxidation stability of blends of Jatropha biodiesel with diesel. Fuel, 90(10): 3014-3020.
    CrossRef    
  25. Kalam, M.A. and H.H. Masjuki, 2002. Biodiesel from palmoil: An analysis of its properties and potential. Biomass Bioenerg., 23: 471-479.
    CrossRef    
  26. Kappe, C.O., 2004. Oxidation degradation of biodiesel. Angew. Chem. Int. Edit., 43: 6250-6284.
    CrossRef    PMid:15558676    
  27. Kaul, S., R.C. Saxena, A. Kumar, M.S. Negi, A.K. Bhatnagar, H.B. Goyal and A.K. Gupta, 2007. Corrosive behavior of biodiesel from seed oils of Indian origin on diesel engine parts. Fuel Process. Technol., 88: 303-307.
    CrossRef    
  28. Kivevele, T.T. and M.M. Mbarawa, 2011. Impact of antioxidant additives on the oxidation stability of biodiesel produced from croton megalocarpus oil. J. Fuel Process. Technol., 92(6): 1244-1248.
    CrossRef    
  29. Knothe, G., 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol., 86(10): 1059-1070.
    CrossRef    
  30. Knothe, G., 2006. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc., 83: 823-833.
    CrossRef    
  31. Knothe, G., 2007. Some aspects of biodiesel oxidation stability. Fuel Process. Technol., 88: 669-677.
    CrossRef    
  32. Kumar, P.B. and A.B. Singh, 2012. Use of fourier transform infrared spectroscopy to cooking oils. Int. J. Pharm. Chem. Biol. Sc., 2(4): 670-680.
  33. Leadbeater, N.E. and L.M. Stencel, 2006. Fast, easy preparation of biodiesel using microwave heating. Energ. Fuel., 20(5): 2281-2283.
    CrossRef    
  34. Lewis, E.N., E. Lee and L.H. Kidder, 2004. Near-infrared chemical imaging. Microsc. Today, 12: 6-11.
  35. Madawala, S.R.P., S.P. Kochharb and P.C. Duttaa, 2012. Lipid components and oxidative status of selected specialty oils. Grasas Aceites, 63(2): 143-151.
    CrossRef    
  36. McCormick, R.L., M. Ratcliff, L. Moens and R. Lawrence, 2007. Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Process. Technol., 88: 651-657.
    CrossRef    
  37. Ming, C.C., M.C. Cesar and A.G.G. Lireny, 2009. Carotenoids concentration of palm oil using membrane technology. Desalination, 246(1-3): 410-413.
  38. Miraliakbari, H. and F. Shahidi, 2008. Oxidative stability of tree nut oils. J. Agr. Food Chem., 56: 4751-4759.
    CrossRef    PMid:18494484    
  39. Monyem, A., M. Canakci and J.H. Van Gerpen, 2000. Investigation of biodiesel thermal stability under simulated in-use conditions. Appl. Eng. Agric., 16: 373.
    CrossRef    
  40. Morita, M. and M. Tokita, 2006. The real radical generator other than main-product hydroperoxide in lipid autoxidation. Lipids, 41: 91-5.
    CrossRef    PMid:16555477    
  41. Moser, B.R., 2012. Efficacy of gossypol as an antioxidant additive in biodiesel. J. Renew. Energ., 40(1): 65-70.
    CrossRef    
  42. Perreux, L. and A. Loupy, 2001. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium and mechanistic considerations. Tetrahedron, 57: 9199-9223.
    CrossRef    
  43. Rohman, A. and Y. Che Man, 2010. Fourier transform infrared (FTIR) spectro-scopy for analysis of extra virgin olive oil adulterated with palmoil. Food Res. Int., 43: 886-892.
    CrossRef    
  44. Saifuddin, N. and K.H. Chua, 2004. Production of ethyl ester (Biodiesel) from used cooking oil: Optimization of transesterification process using microwave irradiation. Malays. J. Chem., 6(1): 33-38.
  45. Schneider, C., N.A. Porter and A.R. Brash, 2008. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation. J. Biol. Chem., 283: 15539.
    CrossRef    PMid:18285327 PMCid:PMC2414272    
  46. Sendzikiene, E., V. Makarevicience and P. Janulis, 2005. Oxidation stability of biodiesel fuel produced from fatty wastes. Pol. J. Environ. Stud., 14(3): 335-339.
  47. Sundram, K., R. Sambanthamurthi and Y.A. Tan, 2003. Palm fruit chemistry and nutrition. Asia Pac. J. Clin. Nutr., 12(3): 355-362.
    PMid:14506001    
  48. Trakarnpruk, W. and S. Porntangjitlikit, 2008. Palm oil biodiesel synthesized with potassium loaded calcinedhydrotalcite and effect of biodiesel blend on elastomer properties. Renew. Energ., 33: 1558-1563.
    CrossRef    
  49. Zagonel, G.F. and Z.P. Peralta, 2004. Multivariate monitoring of soyabean oilethanolysis by FTIR. Talanta, 63(4): 1021-1025.
    CrossRef    PMid:18969529    
  50. Zuleta, E.C., L. Baena, L.A. Rios and J.A. Calderón, 2012. The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: A review. J. Braz. Chem. Soc., 23(12): 2159-2175.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved