Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


A Comprehensive Evaluation of Drain-side Layout Topologies on the Power nLDMOS ESD/LU Reliabilities

Shen-Li Chen and Min-Hua Lee
Department of Electronic Engineering, National United University, 1, Lien-Da Rd., MiaoLi City 36003, Taiwan
Research Journal of Applied Sciences, Engineering and Technology  2014  4:496-502
http://dx.doi.org/10.19026/rjaset.8.998  |  © The Author(s) 2014
Received: March ‎19, ‎2014  |  Accepted: May ‎08, ‎2014  |  Published: July 25, 2014

Abstract

The non-uniform turned-on and low holding-Voltage (Vh) issues are seriously impacted the reliability abilities of an n-channel lateral-diffused power MOSFET (nLDMOS). Therefore, basing on the drain Field-Oxide Device (FOD) structure of an nLDMOS and changing the thin-Oxide Definition (OD) topology for contacts located in the middle region of drain-side will be investigated in this study. The OD structure will renew as some dotted-OD manners. Experimental results show that the dotted-OD layout has a higher Electrostatic Discharge (ESD) capability than that of the FOD structure and the layout type of dotted-OD will affect the ESD capability of an HV component. A uniformly distributed type of dotted-OD will have a highest It2 value, the It2 value is increased about 12% as compared with the Ref. traditional nLDMOS. And, the Vh value will increase with the contacts number increasing within the dotted-OD, which is increased about 28.2% of a dotOD46 device as compared with the traditional nLDMOS. Furthermore, as adding an FODs structure combined with a uniform dotted-OD structure in the drain side will be haven a high ESD capability (about 5.9% increasing) and high LU immunity (25.8% increasing) compared with the traditional nLDMOS DUT. Therefore, it is good both for ESD and Latch-Up (LU) reliability considerations.

Keywords:

Electrostatic Discharge (ESD), Field-Oxide Device (FOD), holding Voltage (Vh), n-channel Lateral- Diffused MOSFET (LDMOS), Oxide Definition (OD), secondary breakdown current (It2), trigger Voltage (Vt1),


References

  1. Chen, S.L. and T.S. Wu, 2013. Reliability design of source/drain adaptive layers in an HV power nLDMOS. Int. J. Energ. Sci., 3(5): 349-356.
    CrossRef    
  2. Chen, S.L. and M.H. Lee, 2014. Impacts of the drain-side nWell adding on ESD robustness in 0.25-μm LV/HV nMOSTs. AASRI Procedia, 7: 51-56.
    CrossRef    
  3. Chen, W.Y. and M.D. Ker, 2009. High-voltage nLDMOS in waffle-layout style with body-injected technique for ESD protection. IEEE Electr. Device L., 30(4): 389-391.
    CrossRef    
  4. Chen, W.Y. and M.D. Ker, 2010. Circuit and layout co-design for ESD protection in Bipolar-CMOS-DMOS (BCD) high-voltage process. IEEE T. Circuits-I, 57(5): 1039-1047.
    CrossRef    
  5. Chen, W.Y. and M.D. Ker, 2011. Improving safe operating area of nLDMOS array with embedded silicon controlled rectifier for ESD protection in a 24-V BCD process. IEEE T. Electron. Dev., 58(9): 2944-2951.
    CrossRef    
  6. Chen, W.Y., M.D. Ker, Y.N. Jou, Y.J. Huang and G.L. Lin, 2009. Source-side engineering to increase holding voltage of LDMOS in a 0.5-μm 16-V BCD technology to avoid latch-up failure. Proceeding of 16th IEEE International Symposium on Physical and Failure Analysis of Integrated Circuits, pp: 41-44.
  7. Chen, S.L., M.H. Lee, T.S. Wu, Y.S. Lai, C.J. Lin and H.H. Chen, 2013. Source-side Layout on LU/ESD Reliability in the HV 0.25-μm 60-V nLDMOS. Lecture Notes in Electrical Engineering, Springer Publisher, New York, USA, pp: 503-511.
  8. Choi, Y.K., I.Y. Park, H.S. Oh, W. Lee, N.J. Kim and K.D. Yoo, 2012. Implementation of low Vgs (1.8V) 12V RF-LDMOS for high-frequency DC-DC converter applications. Proceeding of 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD, 2012), pp: 125-128.
  9. Griffoni, A., S.H. Chen, S. Thijs, B. Kaczer, J. Franco, D. Linten, A. De Keersgieter and G. Groeseneken, 2011. Off-state degradation of high-voltage-tolerant nLDMOS-SCR ESD devices. IEEE T. Electron. Dev., 58(7): 2061-2071.
    CrossRef    
  10. Huang, Y.C., C.T. Dai and M.D. Ker, 2013. Self-protected LDMOS output device with embedded SCR to improve ESD robustness in 0.25-μm 60-V BCD process. Proceeding of IEEE International Symposium on Next-Generation Electronics (ISNE, 2013), pp: 116-119.
  11. Jeon, B.C., S.C. Lee, J.K. Oh, S.S. Kim, M.K. Han, Y.I. Jung, H.T. So, J.S. Shim and K.H. Kim, 2002. ESD characterization of grounded-gate NMOS with 0.35μm/18V technology employing Transmission Line Pulser (TLP) test. Proceeding of Electrical Overstress/Electrostatic Discharge Symposium, pp: 365-375.
  12. Kohno, K., S. Takahashi, H. Himi and Y. Higuchi, 2004. Mixed mode 3D pseudo-1chip ESD surge simulation using hydrodynamic model for new LDMOS cell layout realizing super high ESD endurance over 25kV/mm2. Proceeding of 16th International Symposium on Power Semiconductor Devices and ICs, pp: 41-44.
    CrossRef    
  13. Lee, J.H., H.D. Su, C.L. Chan, D. Yang, J.F. Chen and K.M. Wu, 2010. The influence of the layout on the ESD performance of HV-LDMOS. Proceeding of 22nd International Symposium on Power Semiconductor Devices and IC's (ISPSD, 2010), pp: 303-306.
  14. Lee, J.H., J.R. Shih, C.S. Tang, K.C. Liu, Y.H. Wu, R.Y. Shiue, T.C. Ong, Y.K. Peng and J.T. Yue, 2002. Novel ESD protection structure with embedded SCR LDMOS for smart power technology. Proceeding of 40th Annual Reliability Physics Symposium, pp: 156-161.
  15. Lee, J.H., S.H. Chen, Y.T. Tsai, D.B. Lee, F.H. Chen, W.C. Liu, C.M. Chung, S.L. Hsu, J.R. Shih, A.Y. Liang and K. Wu, 2007. The influence of NBL layout and LOCOS space on component ESD and system level ESD for HV-LDMOS. Proceeding of 19th International Symposium on Power Semiconductor Devices and IC's, pp: 173-176.
    CrossRef    PMCid:PMC2062551    
  16. Qian, Q., S. Liu, W. Wan and W. Sun, 2013. Reliability concern on extended E-SOA of SOI power devices with P-Sink structures. IEEE T. Device Mat. Re., 13(1): 161-166.
    CrossRef    
  17. Sagneri, A.D., D.I. Anderson and D.J. Perreault, 2013. Optimization of integrated transistors for very high frequency DC-DC converters. IEEE T. Power Electr., 28(7): 3614-3626.
    CrossRef    
  18. Salman, A.A., F. Farbiz, A. Appaswamy, H. Kunz, G. Boselli and M. Dissegna, 2012. Engineering optimal high current characteristics of high voltage DENMOS. Proceeding of 2012 IEEE International Reliability Physics Symposium (IRPS, 2012), pp: 3E.1.1-3E.1.6.
    CrossRef    
  19. Shrivastava, M. and H. Gossner, 2012. A review on the ESD robustness of drain-extended MOS devices. IEEE T. Device Mat. Re., 12(4): 615-625.
    CrossRef    
  20. Walker, A.J., H. Puchner and S.P. Dhanraj, 2009. High-voltage CMOS ESD and the safe operating area. IEEE T. Electron. Dev., 56(8): 1753-1760.
    CrossRef    
  21. Zhou, Y., W. Zhang, L. Wang, H. Xie and C. Ding, 2011. A 230 watts RF LDMOS high power amplifier for WCDMA application. Proceeding of IEEE 13th International Conference on Communication Technology, pp: 298-301.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved