Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Further Investigation of Intensity Noise Reduction on an Incoherent Light Source using a Gain Saturated Semiconductor Optical Amplifier in a Spectrum-sliced Channel at 2.5 Gb\s

1Kanar Tariq, 2David I. Forsyth and 2Riyam A. Johni
1College of Science and Technology, University of Human Development, Sulaymaniyah, KRG, Iraq
2Lightwave Communication Research Group (LCRG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
Research Journal of Applied Sciences, Engineering and Technology  2016  7:700-705
http://dx.doi.org/10.19026/rjaset.12.2744  |  © The Author(s) 2016
Received: July ‎26, ‎2015  |  Accepted: August ‎20, ‎2015  |  Published: April 05, 2016

Abstract

The “spectrum-slicing” technique, employing incoherent light, has been shown to be a highly practical, cheap and hence very attractive proposal for future all-optical networks. In this study, the use of semiconductor optical amplifier gain saturation for intensity noise reduction on incoherent light is further studied in terms of the Relative-Intensity-Noise (RIN), with a view to obtaining the optimum SOA injection current and input power conditions to achieve the best possible intensity noise reduction, in conjunction with OSNR, BER and Q-factor results. The results reported herein give designers knowledge of the best SOA operating conditions to enhance overall system performance, whilst still obtaining signal gain from the SOA.

Keywords:

Amplified Spontaneous Emission (ASE), Bit error rate (BER) and quality (Q) Factor, Optical Signal-to- Noise Ratio (OSNR), Semiconductor Optical Amplifier (SOA), Spectrum-Slicing (SS),


References

  1. Connelly, M.J., D.I. Forsyth and I. Evans, 2005. Spectrum-sliced source noise reduction using a semiconductor optical amplifier. Proceeding of the IASTED International Conference on Optical Communications Systems and Networks, as Part of the 5th IASTED International Multi-conference on Wireless and Optical Communications. Banff, Alberta, Canada, pp: 25-28.
  2. Johni, R.A., D.I. Forsyth and K.R. Tariq, 2014. Effects on semiconductor optical amplifier gain quality for applications in advanced all-optical communication systems. Res. J. Appl. Sci. Eng. Technol. (RJASET), 7(16): 3414-3418.
    CrossRef    
  3. Kharraz, O.M., D.I. Forsyth, A.B.B. Mohammad, Y.K. Yeow and A.M. Mataria, 2013. Quantifying system performance improvements in a high-density spectrum-sliced channel running at 10??Gb/s using semiconductor optical amplifier gain compression nonlinearities, Opt. Eng., 52(10): 106-106.
    CrossRef    
  4. Kim, S.J., J.H. Han, J.S. Lee and C.S. Park, 1999. Intensity noise suppression in spectrum-sliced incoherent light communication systems using a gain-saturated semiconductor optical amplifier. IEEE Photonic. Tech. L., 11(8): 1042-1044.
    CrossRef    
  5. Chung, Y.C., J.S. Lee and D.J. Di Giovanni, 1993. Spectrum-sliced fiber amplifier light source for multichannel WDM applications. IEEE Photonic. Tech. L., 5(12): 1458-1461.
    CrossRef    
  6. Lee, S.W., H.W. Song, M.Y. Jung and S.H. Kim, 2011. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography. Opt. Express, 19(22): 21227-21237.
    CrossRef    PMid:22108975    
  7. McCoy, A.D., P. Horak, B.C. Thomsen, M. Ibsen and D.J. Richardson, 2005. Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems. J. Lightwave Technol., 23(8): 2399-2409.
    CrossRef    
  8. Qikai, H. and K. Hoon, 2014. Performance improvement of ultra narrows spectrum sliced incoherent light using offset filtering. IEEE Photonic. Tech. L., 26(9): 870-873.
    CrossRef    
  9. Shin, S., U. Sharma, H. Tu, W. Jung and S.A. Boppart, 2010. Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography. IEEE Photonic. Tech. L., 22(14): 1057-1059.
    CrossRef    PMid:22090794 PMCid:PMC3214975    
  10. Tariq, K.R. and D.I. Forsyth, 2014. Optimization of intensity noise reduction from an incoherent light source using gain saturated semiconductor optical amplifier in a spectrum-sliced channel at 2.5 Gb\s. Res. J. Appl. Sci. Eng. Technol. (RJASET), 7(16): 3387-3390.
    CrossRef    
  11. Yamatoya, T., F. Koyama and K. Iga, 2000. Noise suppression and intensity modulation using gain-saturated semiconductor optical amplifier. Proceeding of the Optical Amplifiers and their Applications (OAA'00), OMD12, pp: 72-74.
  12. Zabinski, P., B. Gilbert and E. Daniel, 2013. Coming challenges with terabit-per-second data communication. IEEE Circuits Syst. Mag., 13(3): 10-20.
    CrossRef    
  13. Zaineb, A. and K. Hoon, 2012. Ultranarrow spectrum-sliced incoherent light source for 10-Gb/s WDM PON. J. Lightwave Technol., 30(19): 3157-3163.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved