Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Automated Architecture Selection for Radial Basis Function Neural Networks

1Tiny du Toit, 2Nawaf Hamadneh, 3Saratha Sathasivam and 4Waqar Khan
1School of Computer, Statistical and Mathematical Sciences, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom, 2531, South Africa
2College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 13316, Saudi Arabia
3School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
4Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Majmaah 11952, Saudi Arabia
Research Journal of Applied Sciences, Engineering and Technology  2016  11:1146-1151
http://dx.doi.org/10.19026/rjaset.12.2856  |  © The Author(s) 2016
Received: December ‎2, ‎2015  |  Accepted: March ‎1, ‎2016  |  Published: June 05, 2016

Abstract

A new model selection algorithm is established to determine the best number of hidden neurons for radial basis function neural networks. We used a Bayesian information-based criterion to select the best number of hidden neurons. The new algorithm grows the number of hidden neurons while the Bayesian information-based criterion is used for improvement. The optimal parameter values of a current neural network are used in the subsequent architecture. The computational results are compared with the trial-and-error approach through publicly available data sets. It is found that the new algorithm is suitable to improve the performance of the neural networks automatically. The root mean square error function is used to measure out-of-sample performance.

Keywords:

Model selection, radial basis neural network, schwarz information criterion,


References

  1. Akaike, H., 1974. A new look at the statistical model identification. IEEE T. Automat. Contr., 19(6): 716-723.
    CrossRef    
  2. Bache, K. and M. Lichman, 2013. UCI machine learning repository. School of Information and Computer Science, University of California, Irvine, Retrieved from: http://archive.ics.uci.edu/ml.
    Direct Link
  3. Bors, A.G. and M. Gabbouj, 1994. Minimal topology for a radial basis functions neural network for pattern classification. Digit. Signal Process, 4(3): 173-188.
    CrossRef    
  4. Broomhead, D.S. and D. Lowe, 1988. Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical Report, DTIC Document.
  5. Burnham, K.P. and D.R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. 2nd Edn., Springer, New York.
  6. Cong, R.G. and M. Brady, 2012. The interdependence between rainfall and temperature: Copula analyses. Sci. World J., 2012: 11.
    CrossRef    PMid:23213286 PMCid:PMC3504421    
  7. Du Toit, J.V., 2006. Automated construction of generalized additive neural networks for predictive data mining. Ph.D. Thesis, North-West University, Potchefstroom Campus.
  8. Ghodsi, A. and D. Schuurmans, 2003. Automatic basis selection techniques for RBF networks. Neural Networks, 16(5-6): 809-816.
    CrossRef    
  9. Gow, J.A. and C.D. Manning, 1999. Development of a photovoltaic array model for use in power-electronics simulation studies. IEE P-Elect. Pow. Appl., 146(2): 193-200.
  10. Hamadneh, N., S. Sathasivam, S.L. Tilahun and O.H. Choon, 2012. Learning logic programming in radial basis function network via genetic algorithm. J. Appl. Sci., 12(9): 840-847.
    CrossRef    
  11. Heertjes, M. and R. Verstappen, 2014. Self-tuning in integral sliding mode control with a Levenberg–Marquardt algorithm. Mechatronics, 24(4): 385-393.
    CrossRef    
  12. Kingston, G.B., H.R. Maier and M.F. Lambert, 2005. A bayesian approach to artificial neural network model selection. Proceeding of the International Congress on Modelling and Simulation (MODSIM, 05). Melbourne, Vic., pp: 1853-1859.
  13. Lampariello, F. and M. Sciandrone, 2001. Efficient training of RBF neural networks for pattern recognition. IEEE T. Neural Networ., 12(5): 1235-1242.
    CrossRef    PMid:18249950    
  14. Lee, T.Y., S.A. Chen, H.Y. Hung and Y.Y. Ou, 2011. Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites. PloS One, 6(3): e17331.
    CrossRef    PMid:21408064 PMCid:PMC3052307    
  15. Leonardis, A. and H. Bischof, 1998. An efficient MDL-based construction of RBF networks. Neural Networks, 11(5): 963-973.
    CrossRef    
  16. Lowe, D., 1989. Adaptive radial basis function nonlinearities, and the problem of generalisation. Proceeding of the 1st IEE International Conference on Artificial Neural Networks. London, pp: 171-175.
  17. Moody, J. and C.J. Darken, 1989. Fast learning in networks of locally-tuned processing units. Neural Comput., 1(2): 281-294.
    CrossRef    
  18. Moré, J.J., 1978. The Levenberg-Marquardt Algorithm: Implementation and Theory. In: Watson, G.A. (Ed.), Numerical Analysis. Springer, Berlin, Heidelberg, 630: 105-116.
    CrossRef    
  19. Peng, J.X., K. Li and D.S. Huang, 2006. A hybrid forward algorithm for RBF neural network construction. IEEE T. Neural Networ., 17(6): 1439-1451.
    CrossRef    PMid:17131659    
  20. Peng, J.X., K. Li and G.W. Irwin, 2007. A novel continuous forward algorithm for RBF neural modelling. IEEE T. Automat. Contr., 52(1): 117-122.
    CrossRef    
  21. Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat., 6(2): 461-464.
    CrossRef    
  22. Setiono, R., 2001. Feedforward neural network construction using cross validation. Neural Comput., 13(12): 2865-2877.
    CrossRef    PMid:11705414    
  23. Tilahun, N.H.S.L., S. Sathasivam and O.H. Choon, 2013. Prey-predator algorithm as a new optimization technique using in radial basis function neural networks. Res. J. Appl. Sci., 8(7): 383-387.
  24. Wang, T., H. Gao and J. Qiu, 2016. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE T. Neural Networ. Lear. Syst., 27(2): 416-425.
    CrossRef    PMid:25898246    
  25. Wang, Z.O. and T. Zhu, 2000. An efficient learning algorithm for improving generalization performance of radial basis function neural networks. Neural Networks, 13(4-5): 545-553.
    CrossRef    
  26. Ye, N., 2003. The Handbook of Data Mining. Lawrence Erlbaum Associates, Publishers, Mahwah, NJ.
  27. Zhao, Z.Q., X.D. Wu, C.Y. Lu, H. Glotin and J. Gao, 2014. Optimizing widths with PSO for center selection of Gaussian radial basis function networks. Sci. China Inform. Sci., 57(5): 1-17.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved