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Abstract: In this study, a weighted estimation algorithm is proposed for food transporting two-axis magnetic 
compass. This method is based on ellipse fitting algorithm and compensates the combined effort of all linear time-
invariant distortions, namely bias, scale factor, hard iron, non-orthogonality and so on. In contrast to the direct 
ellipse fitting method for estimating ellipse coefficient, which achieves best estimate based on minimizing the mean 
square algebraic distance from collected data points to ellipse in mathematical model, this procedure presents a new 
estimator in least-square sense where the weighted approximate distance is presented. The algorithm is simulated to 
verify robustness and further validated on collected experimental data using a low-cost fluxgate compass. The 
results indicate that the calibration algorithm is effective and superior to the direct ellipse fitting method, the heading 
error after calibration is less than. 
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INTRODUCTION 

 
Magnetic compass is a device indicating the 

heading of vehicle, which is widely used in scientific 
and  engineering  applications  (Zhang et al., 2013; Wu 
et al., 2013 and Yun et al., 2012). When the vehicle is 
level, heading is computed by the measurements of the 
earth’s horizontal magnetic field vector with a two-axis 
magnetic compass: 
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b

xh  and 
b

yh  represent components 

of earth’s horizontal magnetic field vector in the 
carrier’s body coordinates where x-axis is in the 
forward looking direction and y-axis points to the right, 
the b superscript denotes the body coordinate frame. 
However, due to the manufacturing tolerance and 
magnetic interferences, compass reading is distorted by 
various errors and heading calculated with the raw 
measurements is directly corrupted. Therefore, 
calibration of compass involving both identifying and 
compensating the errors is essential. 

There are many methods for food transporting 

compass. A classical procedure called swinging 

algorithm in Gebre-Egziabher et al. (2001) has been 

used successfully. This method involves rotating 

vehicle containing the compass through a series of 

known headings and adopts the difference between the 

crude heading determined by compass reading and the 

known heading to compute calibration parameters. A 

method utilizing neural networks (Wang and Gao, 

2006) has been presented by modeling the nonlinear 

mapping between the compass heading and the true 

heading, which is robust in practical applications. The 

angular-rate method derived in Markovic et al. (2011) 

requires turning the compass through a full circle and 

estimates the parameters using the information from a 

low-cost gyroscope. All these methods demand an 

external heading reference, which limit in-situ 

calibration and the quality of the calibration degrades 

when compass is moved far away from the location 

where the calibration is performed, because the 

parameters are functions of the local magnetic field 

strength. Moreover, a class of reference-free approaches 

has been proposed. A simple method using one-turn 

rotation scheme (Caruso, 1998; Yun et al., 2008) 

measures the minimum and maximum readings of each 

axis and then calculates the scale factors and the bias 

errors with these readings, of which the error 

parameters is sensitive to the noise. The ellipse-fitting 

method described in develops the calibration 

parameters estimation into an ellipse fitting problem 

through a non-linear transformation and adopt analytic 

algorithm or iterative algorithm to minimize algebraic 

distance between ellipse and compass reading data to 
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identify ellipse parameter. The criteria of ‘best fit’ (in 

the least squares sense) are mainly focused on 

minimizing the distance for ellipse, not the distortion 

for heading. Therefore, for heading determination 

systems, these methods cannot achieve the state of ‘best 

fit’ because of the nonlinear relationship between 

heading and magnetic vector described in Eq. (1), even 

more, when the data points for fitting ellipse distribute 

in a limited region, the heading accuracy corrected with 

these methods make large error. 
To improve the performance of the aforementioned 

procedure, we introduce a new approach based on 
ellipse fitting for food transporting compass without 
requiring external reference. In this method, a new 
estimator based on the weighted approximate distance 
is devised, of which the approximate distance is derived 
using Taylor's expansion of quadratic polynomial on 
ellipse, the weighting coefficient is predetermined to 
establish the initial conditions and is heading-dependent 
in the iterative process and then an iterative, least-
square algorithm is utilized to estimate the ellipse 
parameters.  
 

MATERIALS AND METHODS 
 
Error modeling: Since compass reading is corrupted 
by various errors to some degree, the raw magnetic 

field vector ˆbh  which is direct output of magnetic 

compass will be different from the error-free magnetic 
field vector h

b
. To counteract these errors, a 

mathematical model between them is required first. In 
general, there are five error sources, namely, scale 

factor Ksf, non-orthogonality Kno, soft iron Ksi, hard iron 

Bhi 
and Bias Bb, the compass reading can be modeled 

as: 

 
ˆb b b

sf no si hi b e eh K K K h B B K h B= + + = +
             (2) 

 
where, Ke represents the combined effect of the first 

three error sources and Be accounts for the rest.  

Generally, each axis of compass has a varying 

constant of proportionality between input and output 

and thus, in the two-dimensional case, Ksf is a 2×2 
diagonal matrix, in which the elements of the principal 

diagonal stand for the sensitivities of individual axis of 

compass. 

Soft iron is a kind of ferromagnetic material that 

generates its own field in response to an external 

magnetic field and the resulting magnetic field depends 

on the magnitude and direction of the applied magnetic 

field with respect to the soft iron. In this study, we 

assume that the response of soft iron is linear and 

without hysteresis, then soft iron error can be expressed 

with a 2×2 matrix. Using the QR decomposition for the 

matrix, we can obtain an orthogonal matrix of which 

the coefficients can be calculated with compass 

alignment calibration and a lower triangular matrix 

which is in our sights. In terms of the analysis, we 

assume that Ksi is a lower triangular matrix. 

Non-orthogonality error comes from the 

misalignment between individual axes and carrier’s 

body coordinates and results in compass reading be 

cross coupling of the magnetic field components. If 

care is taken during installation that x-axis of compass 

is defined to be completely aligned with the x-axis of 

carrier’s body coordinates, y-axis lies in the plane 

defined by the x-axis and y-axis of the coordinates and 

it is close to the latter axis, hence Kno 
can be expressed 

as a lower triangular matrix which shows an equivalent 

effect with matrix Ksi. 

Hard iron error is result of unwanted magnetic field 

generated by permanent magnets in the vicinity of 

compass, it is time invariant in vehicle coordinate 

frame, shifts compass reading by a constant amount and 

is represented by a 2×1 vector Bhi in Eq. (2). 

Bias is also known as dc offset or zero shift, which 

is a non-zero constant value and can be modeled as a 

2×1 vector Bb and mathematically it is grouped together 

with hard iron error Bhi. 

On the basis of these error forms, we get the other 

matrix sets in Eq. (2) that Ke 
is a 2×2 lower triangular 

matrix and Be is a 2×1 vector.  

Thus, in accordance with the mathematical model 

(2) and the heading computation Eq. (1), the 

combination of these errors will result in an incorrect 

heading estimate. 

 

Calibration algorithm: In this section, we present a 

weighted optimization estimation technique to calibrate 

magnetic compass, the method is based on the fact that 

the locus of error-free measurements from two-axis 

magnetic compass is a circle and the circle changes into 

an ellipse with the addition of errors described in the 

last section. 

For a level, error-free magnetic compass, there is 

an expression as follows:  

 
2

2 2 2( ) ( ) Hb b b

x y h
h h h= + =

                (3) 

 

where, Hh is the magnitude of the earth’s horizontal 

magnetic field vector. 

Taking inverse transformation of equation gives: 

 
ˆ( )b b

c c
h K h B= +

                 (4) 
 

where, 1

c e
K K −=  and 

c eB B= − . Then substitute Eq. (4) 

into Eq. (3) and using simplified calculation we have: 

 
2ˆ ˆ ˆ( ) 2 Hb T b T b T

hh Ah b Ah b Ab− + =                 (5) 
 

where, T

c c
A K K=  and 

cb B= − . 
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Analyzing errors effect on circle described in Eq. 

(3), Eq. (5) gives an ellipse about vector ˆbh . Since an 

ellipse is a kind of planar curve, its general equation 

can be represented as follows: 

 
2 2

1 2 3 4 5 6 0a x a xy a y a x a y a+ + + + + =
                      (6) 

 

where, 
2( , )p x y R= ∈ . According to the correspondence 

relation between Eq. (5) and (6), we have: 

 

1 2

2 3

/ 2

/ 2

a a
A

a a

 
=  

  ,

11
[ ]

2

Tb BA−= −
                          (7) 

 

where, B = [a4 a5].  

For a set of collected data, calibration process is to 

estimate a “best” ellipse that fit the data points as close 

as possible and then calculates the calibration 

parameters of Kc and Bc with the ellipse coefficients. In 

general, the mean square distance from data points to 

ellipse defined by the parameters is deemed as fit 

criteria, which cannot be computed by direct methods. 

If we define F and X by: 

 

1 2 3 6[ , , , ]F a a a a= L
, 

2 2[ , , , , ,1]TX x xy y x y=
 

 

Eq. (6) can be expressed in a compact form: 

 
0FX =                   (8) 

 

Let: 

 

( )f p FX=
                               (9) 

  

where, p = (x, y) is a data point and Z(f) = {p: f(p) = 0}. 

For a set of point pi, i = 1, 2,…., N, there is an 

equation given by the truncated Taylor series expansion 

of f: 

 

( ) ( ) ( )( )0 0i i i
f p f p f p p p′− = −

            (10) 

 

where, p0 is the unique point that minimizes the 

distance ||p0 – pi|| to pi 
and f(p0) = 0, f'(pi) is the 

Jacobian matrix of f(pi), then p0 is given by: 

 

( ) ( )0 i i ip p f p f p
+′= −

              (11) 

 

where, f'(pi)
+

 
is the pseudo inverse of f'(pi). The square 

distance from a point to the ellipse can be approximated 

as: 
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= −
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And the mean square approximate distance is: 

 

( )( )
1

21
( ) ,

N

i

i

J F dist p Z f
N =

= ∑
                           (13) 

 

Note, (13) has a geometric property that it doesn’t 

change if we replace αf for f where α is a nonzero 

number, this may result in the ellipse parameters 

identifiable, so a matrix constraint: 

 

1

1
( ) ( ) 1

N
T

i i

i

f p f p
N =

′ ′ =∑
                            (14) 

 

Can be imposed on f without affecting the set of 

zeros of a minimizer of Eq. (13). 

Substitute Eq. (9) into expression (13) and Eq. 

(14), we have: 

 
TJ FMF=                              (15) 

 

where, 

 

 
1

1
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T
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where,  

 

1

1
( ) ( )

N
T

i i

i

Q X p X p
N =

′ ′= ∑  

 

Thus, ellipse fitting corresponds to the 

minimization of expression constrained by equation, 

which is an approximate estimator that can be 

computed with generalized eigenvector fit algorithm. 

Theoretically, the approximate fitting method 

represented by the expressions above, has been 

considered to be superior to the Direct Ellipse Fitting 

Method (DEFM) with simplified estimator based on the 

minimization of algebraic distance between ellipse and 

reading data.  

For food transporting magnetic compass indicating 

the heading of vehicle, on the basis of analyzing Eq. 

(1), the approximate distance at different points, i.e., at 

different coordinate, shows various effects on heading 

and then a weighted factor is given as follows: 

 
2 1(1 ( / ) )b b

i yi xiu h h −= +
               (17) 

 

Accordingly, expression (15) is rewritten as: 

 
TJ FMF=                                                           (18) 

 

where,  
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1

1
[ ( ) ( ) ]

N
T

i i i i

i

M u w X p X p
N =

= ∑  

 

Then an Weighted Ellipse Fitting Method (WEFM) 

is obtained with the estimator described by expression 

and equation, which is a nonlinear least squares 

problem and an iterative algorithm described as follows 

is required to compute it. 

 

• Establish an initial condition for ui and wi. 

 

Supposing that the ellipse to be fitted is close to 

circle, we have: 

 

1

1
1 ( ) ( ) ( ) ( )

N
T T

i i j j

i

f p f p f p f p
N =

′ ′ ′ ′= ≈∑
            (19) 

 

For j = 1, 2, 3…N, then there is: 

 

1iw ≡
                (20) 

 

And ui is initialized to a nonzero number which is 

set to be one in the following tests: 

 

• Calculate matrix M and Q with expression (16-18). 

• Obtain a least squares estimate for F as follows: 

 

Considering the function: 

 

( , ) ( 1)T TF FMF FQFφ λ λ= − −
                           (21) 

 

Using Lagrange multipliers theorem, we arrive at 

simultaneous equations as follows: 

 

(a)

(b)1

T T

T

MF QF

FQF

λ =


=                                           (22) 

 

Then F is a generalized eigenvector of matrix M 

with respect to matrix Q corresponding to the smallest 

positive eigenvalue. 

 

• Return the Step 2 and repeat until ‘best fit’ (in the 

least squares sense) is achieved, that is, under a 

certain resolution, the estimate of F does not 

change from one iteration to the next. 

 

Calculating the compensation coefficients of Kc 

and Bc with Eq. (7) and (5) after the iterations complete, 

we can now use the estimated calibration parameters to 

compute the error-free magnetic field vector h
b
 from the 

raw magnetic field vector ˆbh  using Eq. (4). 

 

Simulation studies: A series of simulation studies is 

examined   to   assess   the performance of the proposed 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1: Magnetic field locus 

 

algorithm compared with the direct ellipse fitting 

method. We suppose that the magnetic field is uniform 

at the location where the magnetic sensor is and its 

horizontal intensity is T. As depicted in Fig. 1, the 

error-free magnetic field vectors covering direction in 

the horizontal plane are generated as reference data 

represented   with   the  line  of  circle  and  the  errors  

of which  the  parameters  are  set  as  follows 

respectively: 

 

1.1067 0

0.0552 0.9247
eK

 
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  , 

0.0154

0.0056
eB

 
=  −   

 

Are applied to the reference data to produce the 

raw magnetic field data represented with the dots on the 

ellipse. In each simulation, a set of data points, as the 

training data for fitting ellipse, are sampled in a certain 

region of the ellipse specified by a start and end angle 

and a set of test data points collected from the whole 

ellipse with uniform interval is used to measure the 

calibration accuracy. 

In the first simulation, we investigate the estimator 

under the condition that a zero-mean Gaussian white 

noise with variance σ of 0.2×10
-10

 T is added to the 72 

training data points which are sampled from the whole 

ellipse uniformly. Calibration parameters are estimated 

with the DEFM and WEFM and used to revise the raw 

magnetic field data separately. Figure 2 shows a 

comparison for calibration accuracy in the heading 

domain. The heading error 
eφ , which is computed by 

taking the difference between the headings generated 

by the calibrated magnetic field data and the reference 

data, has a maximum value of 7.77° before calibration 

(Fig. 2a) and 0.22° with the DEFM and 0.19° with the 

WEFM after calibration (Fig. 2b). 

In the second simulation, the performance of the 

estimator is studied in the case of the training data 

points  sampled in a varied region Rφ  of ellipse, while a 

noise with  variance σ of 0.2×10
-10

 T is set. The varied 

region begins from 0°.  For  statistical  evaluation, 1000   

0.6
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0
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(a) Heading errors before calibration 

 

 

 

 
 

 

 

 

 

 
 

 

 
 

(b) Heading errors after calibration 

 
Fig. 2: Pre-and post calibration heading errors of simulation 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3: Comparison of The DEFM and WEFM with training 

data points sampled in varied region 

 

independent noise instances for each particular region. 

The result is measured in terms of the Root-Mean-
Square (RMS) heading error: 

 
1000

2

1

1
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1000
ei

i

MAX φ
=
∑

               (23) 

 

where,  denotes the heading error with the ith noise 

instance   and    reported   in   Fig. 3.  It reveals that, the

 

 

 

 

 

 
 

 

 

 

 

 
 

 
(a) 0°-360° angle range 

 
 

 

 

 

 

 
 

 

 

 

 
 

 
(b) 0°-160° angle range 

 
Fig. 4: Statistical analysis of the heading error based on 

varying noise levels in two different angle ranges  
 

WEFM is noticeably better than the DEFM while data 

points come from a small region, the DEFM even 

cannot compensate properly with the angle range of the 

region less than 120° and both improve as the region of 

data points was increased. 

In the final set of simulations, tests are performed 

when the data point region is fixed, while the noise 

level changes. The angle ranges of region 0°- 360° and 

0°-160° are selected, 1000 independent noise instances 

for each σ with variances range from 0 to 0.2×10
-8

 T are 

applied. The results of the RMS heading error are 

illustrated in Fig. 4. 

As we can see, the heading accuracy are improved 

obviously with both calibration method and there is 

almost no difference in heading error between the two 

methods when the training data are sampled from the 

whole ellipse, however, when the sampling of training 

data is limited to a small region (0°-160°), the WEFM 

is found to have superior performance. These 

simulations also show the proposed method to be very 

robust. 

 

RESULTS AND DISCUSSION 
 

As a final verification, the proposed calibration 

method  is   carried   out   with   experimental   platform 
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Fig. 5: Nonmagnetic turntable platform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: Data points and fitted ellipse curve 

 

consisted of three-axis nonmagnetic turntable and 

magnetic compass, which is illustrated in Fig. 5. The 

turntable used to evaluate the algorithm accuracy is

3SK-150 manufactured by Jiujiang Precision 

Measuring Technology Research Institute of China, of 

which the resolution is 1'. The magnetic compass is 

fabricated in our laboratory that has three orthogonal 

magnetic sensors of which the two in horizontal plan

is used. The axes of the magnetic compass mounted is 

aligned with the turntable to minimize the misalignment 

error, the experimental platform is located away from 

ferromagnetic materials. 

First, a set of training data points as represented by 

the dots in Fig. 6 is collected at whole directions with a 

substantially uniform interval and a set of test data 

points is sampled in 72 known headings, with the 

reference angles being 5° apart. The ellipse coefficients 

are estimated through the training data points 

two methods. Then the calibration parameters are 

calculated with Eq. (5) and (7). 

The raw heading errors 
eφ

 
is shown in Fig. 7a, of 

which the maximum value is 1.90°. Under the condition 

that calibration coefficients are estimated through the 

all training data, the heading errors corrected by the two 

methods are found within 0.17° (Fig. 7b). When a part 

of the training data points from the angle range of 

160° are used to fit an ellipse, the maximum value of 

the heading errors is still close to 0.17°

the WEFM and 0.21° calibrated by the DEFM (Fig. 7c).
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axis nonmagnetic turntable and 

magnetic compass, which is illustrated in Fig. 5. The 

turntable used to evaluate the algorithm accuracy is 

150 manufactured by Jiujiang Precision 

Measuring Technology Research Institute of China, of 

. The magnetic compass is 

fabricated in our laboratory that has three orthogonal 

magnetic sensors of which the two in horizontal plane 

is used. The axes of the magnetic compass mounted is 

aligned with the turntable to minimize the misalignment 

error, the experimental platform is located away from 

First, a set of training data points as represented by 

Fig. 6 is collected at whole directions with a 

substantially uniform interval and a set of test data 

points is sampled in 72 known headings, with the 

apart. The ellipse coefficients 

are estimated through the training data points with the 

two methods. Then the calibration parameters are 

is shown in Fig. 7a, of 

. Under the condition 

that calibration coefficients are estimated through the 

all training data, the heading errors corrected by the two 

(Fig. 7b). When a part 

of the training data points from the angle range of 0°-

sed to fit an ellipse, the maximum value of 

0.17° calculated with 

calibrated by the DEFM (Fig. 7c). 

 
 
 

 

 

 
 
 
 
 
 
 
 

(a) Heading errors before calibration
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

(b) Heading errors after calibration using the whole 
training data 

 

 
 

 
 
 
 
 
 

 

 

 

 

 
 

(c) Heading errors after calibration using a part of the training 

data 

 
Fig. 7: Heading errors with experimental data
 

CONCLUSION

 

A weighted estimation algorithm for food 

transporting magnetic compass used in heading 

determination system is presented, which requires no 

external reference. The proposed method is based on 

ellipse fitting to determine the combined effort of all 

linear time-invariant distortions and uses an iterative 

least square estimator to minimize the mean square 

0.3 0.6

2

0 90 180 270
φ(°)

1

0

-1

-2

φ 
 (

°)
e

0 90 180 270
φ(°)

φ 
 (

°)
e

0.4

0.2

0

-0.2

-0.4

The DEFM

The WEFM

0 90 180 270
φ(°)

φ 
 (

°)
e

0.4

0.2

0

-0.2

-0.4

The DEFM

The WEFM

before calibration 

calibration using the whole  

Heading errors after calibration using a part of the training 

experimental data 

CONCLUSION 

A weighted estimation algorithm for food 

transporting magnetic compass used in heading 

determination system is presented, which requires no 

external reference. The proposed method is based on 

ellipse fitting to determine the combined effort of all 

invariant distortions and uses an iterative 

least square estimator to minimize the mean square 
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weighted approximate distance from data points to 

ellipse. Simulation results indicate that, the proposed 

method is accurate, robust and superior to the direct 

ellipse fitting method. Experiment test results show 

that, the maximum value of heading errors with the 

proposed calibration method is 0.17° contrasted with 

1.90° before calibration. 
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