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Abstract: As the biggest "carbon sinks" and "carbon source" of terrestrial ecosystems, soil organic carbon plays a 
crucial role in global warming and agricultural production. Both of natural and human factors has a momentous 
influence on soil organic carbon. The cultivated soil of mountainous and hilly area located in Yunyang County was 
selected as the object area of research. Elevation, slope, parent materials, slope position and Topography Wetness 
(TWI) are considered as essential factors for soil organic carbon. In addition, category variables were introduced 
into the regression model through path analysis, the mechanism of factors on cultivated Soil Organic Carbon (SOC) 
density was discussed. The variability of SOC density was gained by border analysis and anisotropic analysis. The 
results show that the average, 0-20 cm, cultivated SOC density is 2.91 kg/m2 and the cultivated soil carbon storage is 
1838.75×106 kg in the study area. The correlation between elevation and SOC density is significant (0.329**). 
Topography wetness index (TWI) also has great correlation with SOC density (0.256**). Areas covered by Gray-
brown purple mud (shale) efflorescence and Purple sand and mud (shale) efflorescence have lower SOC density. 
The sequence of SOCD in different slope position is: Valley>slope foot>ridge>slope shoulder>slope back. From 
spatial variation aspect, anisotropic analysis illuminates that, spatial variability of SOC density is more drastic in 
south-north orientation than in east-west orientation. 
 
Keywords: Anisotropic, impact factors, soil organic carbon 

 
INTRODUCTION 

 
Soil Organic Carbon (SOC) is an import ant soil 

component in farming systems. It is essential to 
improve soil and water quality and hence sustains food 
production (Singh et al., 2007; Longbottom et al., 
2014). As the largest carbon reservoir in terrestrial 
ecosystems (Li et al., 2002), soil carbon library has an 
important effect on the greenhouse effect and global 
climate change4.  

There is strong spatial variation in Soil Organic 
Carbon (SOC) (Xie et al., 2004; Grüneberg et al., 2010) 
and both of natural and human factors can bring a great 
influence on spatial variability of the SOC (Mou et al., 
2005; Somaratne et al., 2005; Tan et al., 2004a). 
The significance of impact factors varies from scale to 
scale (Powers and Schlesinger, 2002). Likewise, the 
influence of different geographical regions on main 
controlling factors of the spatial distribution is different 
(Dai and Huang, 2006). In recent years, studies on the 
mechanism and spatial variation of Impact Factors 
affecting soil organic carbon have become a research 
hotspot. The traditional soil organic carbon analysis 
was often based on qualitative procedures (FAO, 1976). 
Recently, with the rapid development of computers and 

information technology (Soil Survey Staff, 1993; 
USDA, 2007), a more quantitative approach has been 
developed that may replace the traditional inventory 
techniques. 

The method of agricultural management, cropping 
systems, vegetation, climate, terrain conditions and 
other factors are generally considered to have 
significant effects on soil organic carbon (Vallejo et al., 
2008). To quantify the qualitative variables into 
regression model to analyze the influences of these 
factors on cultivated soil organic carbon density, using 
the above factors as auxiliary data has become possible. 
As it has a significant effect on the predicted accuracy, 
that the soil parent material as the spatial variable, 
introduced into the soil organic carbon prediction 
model (Cresser et al., 2007). Alejandra function was 
used to quantify the qualitative factors and the soil 
parent material was introduced into the multiple 
regression models to realize the soil organic carbon 
density spatial prediction and mapping, where the 
results indicated that the prediction accuracy was 
improved (Cresser et al., 2007).  

At present, researches on effects of soil parent 
material on soil organic carbon density and spatial 
prediction are of great importance but largely missing. 
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Meanwhile, effects of soil parent material on soil 
organic carbon density remain to be further explored. 
Hence, we have to quantify qualitative soil parent 
material to analyze inherent soil organic carbon 
variation caused by the interaction of different soil 
forming factors accurately. 

Extensive literatures have reported the distribution 
patterns    and   spatial   characteristics of   soil  organic  
carbon  reserves  from  small  scale  to large scale (Tan 
et al., 2004b; Greenland and Szabolcs, 1994). However, 
due to the difficulties encountered in obtaining accurate 
information of soil organic carbon from the local scale, 
researches on the same region often draw different 
conclusions (Yu et al., 2005; Wang et al., 2000). 
Although numerous studies have reported on field 
scale, the researches on regional soil organic carbon 
storage  and  distribution are still largely missing (Don 
et al., 2007). There is a need for further study of soil 
organic carbon content in small hilly areas, especially 
on regional scale, with limited data availability and 
considerable inherent soil variation caused by the 
interaction of different soil forming factors, in order to 
improve the accuracy of the carbon cycle from the 
regional, national and global scale.  

Here, we focused on SOC content because these 
properties are important driving factors behind crop 
production and can be used in crop growth simulation 
models as indicators of soil fertility. We thoroughly 
analyzed influencing factors and the spatial variability 
of cultivated soil organic carbon at the regional scale, 
based on 5893 soil samples taken in the surface layer 
(0-20 cm) in the period from 2008 to 2010.This study 
may provide scientific guidance for farming and 
agricultural regional planning and have 4 main 
objectives: 1. to evaluate the soil organic carbon storage 
of Yunyang area; 2. to analyze quantitative relations of 
SOC and Impact Factors (including Soil parent 
material, soil type and topographical variables); 3.to 
analysis direct or indirect influence of Impact Factors 
on soil organic carbon and the influence path; and 4.to 
assess spatial distribution and variation characteristics 
of soil organic carbon. 

 
MATERIALS AND METHODS 

 
Study site: Our study located in southwestern China 
covers an area of 3649 km2 with an elevation ranging 
from 139 to 1809 m above sea level

 

 
 

Fig. 1: Distribution of sampling points 
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(108°24′32″~109°14′51″E, 30°35′6″~31°26′30″N). The 
area is generally characterized by Karst and hilly to 
mountainous topography. The climate is subtropical 
moist monsoon with a mean annual precipitation of 
1165.8 mm and a mean annual temperature of 184°C. 
Based on the FAO (1976) soil classification, dominant 
soils in the study area are paddy soils, purple soils, 
yellow soils and limestone.  
 
Soil sampling: A fertility survey of the farmland was 
carried out in Yunyang County in 2011 and all the 
sample data used in this study were obtained from this 
fertility survey data set of 2008-2010 (Yunyang Soil 
Testing and Formulated Fertilization Database). 
Following the farmland productivity evaluation survey 
and quality technical procedures, a total of 5893 soil 
samples were collected from a depth of 0-20 cm of 
cultivated horizon soil. The soil organic matter content 
and soil volume was determined using the dichromate 
oxidation (external heat applied) method and Ring knife 
method, respectively (Nelson and Sommer, 1975). The 
location of each soil sample was recorded with 
Geographical information systems (ArcGIS9.3) 
according  to  the latitude and longitude coordinates 
(Fig. 1). 

Soil organic carbon density was calculated with the 
following equation (Zhang et al., 2005):  

 
( )0.58 1SOCD A H B SOM= × − × × ×                     (1) 

 
where, A is gravel content (%), B is volume mass 
(g/cm3), SOM is organic matter content (g/kg) and 0.58 
is the conversion factor of Bemmelen. 
 
Soil parent material and soil type: According to a soil 
map (map-scale: 1:50,000) and Soil Chronicles of 
Yunyang, there are 7 soil parent materials in the study 
area: dolomite weathered material (Pmd), River 
alluvium (Pma), gray-brown purple mud (shale) 
efflorescence (Pmm), limestone weathering (Pmt), 

feldspar quartz sandstone weathering (Pmf), purple 
sand and mud (shale) efflorescence (Pmp) and reddish 
brown thick mudstone (Pmb). Among 5893 points, 429 
locations are for dolomite weathered material, 146 
locations are for river alluvium, 1472 locations are for 
gray-brown purple mud (shale) efflorescence, 1410 
locations are for feldspar quartz sandstone weathering, 
956 locations are for Purple sand and mud (shale) 
efflorescence and 799 locations are for reddish brown 
thick mudstone. The basic statistics of soil sample 
points are presented in Table 1. 
 
Topographical variables: Elevation data was obtained 
by 30-m grid DEM (digital elevation model) (Fig. 2). 
Three topographical variables were derived from the 
DEM: (1) Topographic Wetness Index (TWI), (2) slope 
position and (3) slope. The topographic wetness index 
can accurately portray the terrain changes and their 
impact on soil runoff is an effective indicator to 
characterize soil moisture content (Zhang et al., 2005). 
It can be written as Wilson and Gallant (2000) and 
Claessens et al. (2006): 
 

ln( / tan )TWI α β=                                                  (2)  
 
where, 
α  = The specific catchment area (SCA, m2/m)  
β  = The local gradient 
 

SCA is defined as the upstream catchment area of a 
unit contour. 

Based on the similarity weighted fuzzy reasoning 
method (Qin et al., 2007, 2009), five slope positions, 
namely, ridge (Spr), shoulder (Sps), slopeback (Spb), 
footslope (Spf) and valley (Spv) were divided in this 
study. Among 5893 points, 937 locations are for ridges, 
1330 locations are for shoulders, 1771 locations are for 
slopeback, 1410 locations are for footslope and 454 
locations are for valleys. The basic statistics of 
sampling points are shown in Table 1.  

All these variables were calculated using software 
SimDTA-V1.0.3 and ArcGIS9.3. 

 
Table 1: Descriptive statistics of categorical auxiliary in the study area 

Category Variable Code Number 

SOCD (kg/m2) 
---------------------------------------------------------
Max. Min. Mean S.D. 

Soil parent 
material 

Dolomite weathered material Pmd 429 6.87 0.12 3.07 1.31 
River alluvium Pma 146 6.04 0.29 2.90 1.13 
Gray-brown purple mud (shale) efflorescence Pmm 1472 6.38 0.01 2.82 1.05 
Limestone weathering Pmt 681 7.60 0.11 3.06 1.18 
Feldspar quartz sandstone weathering Pmf 1410 6.44 0.01 2.93 1.09 
Purple sand and mud (shale) efflorescence Pmp 956 6.76 0.01 2.92 1.14 
Reddish brown thick mudstone Pmb 799 6.28 0.09 2.85 1.10 

Slope position 
 

Ridge Spr 937 6.55 0.10 2.88 1.11 
Shoulder Sps 1330 7.60 0.01 2.75 1.11 
Slopeback Spb 1771 6.87 0.09 2.87 1.08 
Footslope Spf 1401 6.58 0.06 2.98 1.14 
Valley Spv 454 6.42 0.01 3.08 1.28 
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Fig. 2: Maps of DEM 
 
Path and geo statistical analyses: Qualitative 
variables  were  converted  to binary variables (Vallejo 
et al., 2008) by using Alejandra function before the 
correlation analyst.  

Path analysis is the supplement and extension of 
regression analysis (Batjes, 1996). Multivariate linear 
regression equation was developed to achieve path 
analysis in SPSS18.0. MLR equation can be expressed 
as (Du and Chen, 2012): 

 

1
1, 2,3,...

n

i i i
i

y a b x nε
=

= + + =∑                                 (3) 

 
where, 
y  = Soil organic carbon density 
xi  = The Impact factor 
a  = The constant 
bi  = The regression coefficient  
ε  = The error 
 

Geo statistics uses the semi-variogram to quantify 
the random and structured spatial variation of a 
regionalized variable and relevant statistical analysis 
methods to analyze the spatial distribution. The semi-
variogram is depicted as follows: 
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where, N(h) is the number of pairs of sample points 
separated by h, h the lag distance and z(xi) the value of 
the variable z at location of xi. As the most suitable 
model of semi-variogram to obtain the semivariogram 
in this study, Spherical model is described as: 

( ) ))/(5.0/5.1()( 3
10 ahahCCh −+=γ                      (5) 

 
where, 
C0  = The nugget value 
C1  = The base value and a the distance parameter 
 

Trend and anisotropic analysis in ArcGIS 9.3 were 
used to compare SOC densities in South-North (SN), 
Southeast-Northwest (SE-NW), West-East (WE) and 
Northeast-Southwest (NE-SW) direction. The semi-
variogram value were calculated and exported in 
GS+9.0 and the theoretical variogram and test fitting 
effect were obtained by using matlab7.0 to fit 
semivariogram in each direction. 
 

RESULTS 
 
Descriptive statistics: The Kolmogorov-Smirnov test 
was used to analyze the level of the variables 
conformance to a normal distribution. The results 
(Table 2) showed that the values of skewness and 
kurtosis are close to 0 and Kolmogorov-Smirnov test (p 
= 2.9) at a significance level of higher than 0.05, 
implying that the data conforms to normal distribution. 
The standard deviation, basic statistical means are 
shown in Table 2. SOC concentration ranges from 0.01 
to 7.60 kg/m2, with the arithmetic mean of 2.91 kg/m2. 
We integrated the standard deviation and arithmetic 
mean to obtain the coefficient of variation and the result 
shown SOC has a relatively moderate C.V. (38.49%). 

With qualitative variables assigned by using 
formula 4, we got three basic statistical results of 
continuous variables shown in the Table 3 and the 
statistics of each qualitative variable shown in Table 1. 
For soil parent material, The rank order of mean SOC 
density was (1) dolomite weathered material, (2) 
limestone weathering, (3) feldspar quartz sandstone 
weathering, (4) purple sand and mud (shale) 
efflorescence, (5) reddish brown thick mudstone, (6) 
gray-brown purple mud (shale) efflorescence. For slope 
position, the rank order of mean SOC density was (1) 
valley, (2) footslope, (3) ridge, (4) slopeback, (5) 
shoulder.  
 
Correlation analysis: The results of the correlation 
analysis between SOCD and the variables are shown in 
Table 4. According to the results, there were highly 
significant (p<0.01) correlations of SOC with all the 
selected topographic and soil parent material properties, 
as well as between these properties. SOCD was 
positively correlated to elevation, slope, topographic 
wetness, footslope and valley, but negatively correlated 
to ridge, slope shoulder, slopeback and gray-brown 
purple mud (shale) efflorescence. Extremely 
significantly positive correlations were observed 
between slope and reddish brown thick mudstone (r = 
0.036,  p<0.01), elevation and ridge (r = 0.085, p<0.01).  
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Table 2: Classical statistical parameters of the SOCD in the study area 
 Number Min. Max. Mean S.D. Variance Skewness Kurtosis K-S

SOCD (kg/m2) 5893 0.01 7.60 2.91 1.12 1.26 0.05 -0.75 2.91
 
Table 3: Descriptive statistics of continuous auxiliary variables in the study area 

 Code Max. Min. Mean S.D.
Slope Sl 54.45 0 15.66 8.000
Topographic wetness index TWI 15.15 1.01 6.690 1.570
Elevation (m) Alt 1655 175 586.78 247.02
 
Table 4: Correlation coefficient  
Item SOCD Sl Alt TWI Pmd Pmt Pmf Pma

SOCD  1    
Sl -0.021  1   
Alt  0.329**  0.012  1  
TWI  0.256**  -0.069** -0.099** 1  
Pmd  0.006  -0.025 -0.018 0.012 1  
Pmt  0.013  -0.006  0.009 0.002 -0.137** 1  
Pmf -0.001  -0.007  0.001 -0.008 -0.170** -0.179**  1 
Pma  0.010  -0.006  0.010 0.011 -0.061 -0.064** -0.079** 1
Pmp -0.013  -0.009  0.027* 0.006 -0.152** -0.160** -0.199* -0.071**
Pmb  0.007  0.036**  0.009 -0.026* -0.130 -0.137** -0.170 -0.061
Pmm -0.032*  0.013 -0.026* 0.006 -0.226** -0.238** -0.296** -0.106**
Spv  0.470**  -0.007 -0.070** 0.344* -0.006 -0.035** -0.014 -0.012
Spf  0.182**  -0.012 -0.046 0.031* -0.024 0.010 -0.018 0.012
Spb -0.088**  0.005  0.001 -0.068* 0.016 0.023  0.031* -0.002
Sps -0.347**  0.021  0.060 -0.190* 0.000 -0.003  0.003 0.012
Spr -0.308**  -0.012  0.085** -0.158** 0.021 0.005 -0.006 -0.016
Item  Pmp  Pmt  Pmm Spv Spf Spb  Sps Spr

SOCD     
Sl     
Alt     
TWI     
Pmd     
Pmt     
Pmf     
Pma     
Pmp  1    
Pmb -0.153**  1   
Pmm -0.265*  -0.227**  1  
Spv  0.028*  -0.005  0.027* 1  
Spf  0.000  0.016  0.010 -0.277* 1  
Spb -0.006  -0.029* -0.029* -0.300 -0.320** 1  
Sps -0.022  0.020 -0.002 -0.282* -0.301* -0.326  1 
Spr  0.001  -0.004 -0.006 -0.143** -0.153** -0.166** -0.156** 1
**: p<0.01, *: p<0.05 
 
Table 5: ANOVA of the regression model for prediction SOCD 
Item Quadratic sum df MSE F Sig.
Regression 4127.730 9 458.637 817.278 0.000
Residual 3301.397 5883 0.56100  
Total 7429.127 5892  
 
Table 6: The results of regression coefficient 

Model 

Unstandardized coefficients 
------------------------------------------------

Standardized coefficients  T Sig.B Std. Error
1(Constant)   1.264 0.061  4.328 0.0200
Spv   1.396 0.044 0.863  54.297 0.0000
Alt   0.002 0.000 0.354  46.245 0.0004
Spb   0.172 0.041 0.456  28.455 0.0010
Sps  -0.602 0.041 -0.227  14.545 0.0113
TWI   0.038 0.007 0.054  5.714 0.0130
Pmm  -0.114 0.023 -0.046 -5.042 0.0260
Pmp  -0.084 0.028 -0.027 -2.973 0.0030
 
Among  the  negative  correlations,  topographic 
wetness index and elevation was highest (r = -0.99, 
p<0.01). 
 
Stepwise regression: Relationships of SOCD with 
topographic and soil parent material properties were 

obtained by multiple linear regression analysis with the 
stepwise method. Taken seven factors as dummy 
variables into regressions formula 5. The results (Table 
5) of variance analysis (ANOVA) which sum of squares 
of regression and residua was 4127.73 and 3301.40, 
respectively, F statistic was 817.3 (p<0.05) indicated 
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the regression equation was effective. The standard 
errors, standard coefficient (path coefficient) and the T 
test results corresponding regression coefficient in the 
regression equation were shown in Table 6. T test 
showed that the independent variables had significant 
impact on the dependent variable implying the path 
coefficient was effective. Multiple linear regression 
models predicting SOC was achieved as follows: 
 

SOCDregression = 1.264+1.396*Spv+0.002*Alt+ 
0.172*Spb-0.602*Sps+0.038*TWI-0.114*Pmm- 
0.084*Pmp (R2 = 0.54) 

 
Path analysis: Path analysis (cf. Table 7) indicated that 
valley (b = 0.8630, R2 = 0.1253) had the highest value 
of positively direct path coefficient and determination 
coefficient, followed by slope back (b = 0.4560, R2 = 
0.2079), however their indirect path coefficients and 

determination coefficients through other variables were 
lower. By contrast, elevation (b = 0.354, R2 = 0.1253) 
and topography wetness index (b = 0.054, R2 = 
0.0.0029) had higher values of positive direct path 
coefficients, whereas others had negative direct path 
coefficients.  

As shown in Table 4, elevation had extremely 
significantly positive correlations with SOCD, 
indicating SOCD increases as the increase of elevation, 
but an extremely significantly negative correlation with 
topographic wetness index, meaning that the soil 
moisture content in the high altitude areas is less. Path 
analysis (Table 7) showed elevation (b = -0.035) and 
SOCD had negative indirect path coefficients through 
topographic wetness index, as well as topographic 
wetness (b = -0.0053) index through elevation. 

Purple sand and mud (shale) efflorescence (Pmp) 
and gray-brown purple mud (shale) efflorescence 

 
Table 7: Results of path analysis  

Independent 
variable 

Direct  
impact 

Direct 
determination  
coefficient 

Indirect effect on y
------------------------------------------------------------------------- 

Total effect 
Decision 
coefficientPath

Indirect path 
coefficients

Indirect determination  
coefficient

Alt 0.3540 0.1253 Alt TWI y -0.0350 -0.0701 0.3290 0.186
   Alt Spv y -0.0248 -0.0496  
   Alt Spb y 0.0004 0.0007  
   Alt Sps y 0.0212 0.0425  
   Alt Pmm y -0.0092 -0.0184  
   Alt Pmp y 0.0096 0.0191  
TWI 0.0540 0.0029 TWI Alt y -0.0053 -0.0038 0.2560 0.023
   TWI Spv y 0.0186 0.0321  
   TWI Spb y -0.0037 -0.0033  
   TWI Sps y -0.0103 -0.0047  
   TWI Pmm y 0.0003 0.0000  
   TWI Pmp y 0.0003 0.0000  
Spv 0.8630 0.7448 Spv Atl y 0.0604 0.0428 0.4700 0.470
   Spv TWI y 0.2969 0.0321  
   Spv SPb y -0.2589 -0.2361  
   Spv SPs y -0.2434 -0.1105  
   Spv Pmm y 0.0233 -0.0021  
   Spv Pmp y 0.0242 -0.0013  
Spb 0.4560 0.2079 Spb Alt y 0.0023 0.0016 -0.0880 -0.040
   Spb TWI y -0.0310 -0.0033  
   Spb Spv y -0.1368 0.2361  
   Spb Spf y 0.0141 0.0185  
   Spb Sps y -0.1487 -0.0675  
   Spb Pmm y -0.0132 0.0012  
   Spb Pmp y -0.0027 0.0001  
Sps -0.2270 0.0515 Sps Alt y 0.0136 0.0096 -0.3470 -0.120
   Sps TWI y -0.0431 -0.0047  
   Sps Spv y -0.0640 -0.1105  
   Sps Spb y -0.0740 -0.0675  
   Sps Pmm y -0.0005 0.0000  
   Sps Pmp y -0.0050 0.0003  
Pmm -0.0460 0.0021 Pmm Alt y -0.0012 -0.0008 -0.0320 -0.0006
   Pmm TWI y -0.0003 0.0000  
   Pmm Spv y -0.0013 -0.0022  
   Pmm Spb y 0.0013 0.0012  
   Pmm SPs y -0.0001 0.0000  
   Pmm Pmp y 0.0122 -0.0007  
Pmp -0.0270 0.0007 Pmp Alt y -0.0007 -0.0005 -0.0130 -0.0017
   Pmp TWI y -0.0002 0.0000  
   Pmp Spv y -0.0008 -0.0013  
   Pmp Spb y -0.0002 -0.0001  
   Pmp Sps y 0.0006 0.0003  
   Pmp Pmm y 0.0072 -0.0007  
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(Pmm) had inhibitory effect on SOCD in correlation 
analysis,  but  the  former  did  not  reach  a   significant 
level. As far as both in the regression equation was 
concerned, inhibitory effect of purple sand and mud 
(shale) efflorescence (R2 = -0.0017) was greater than 
gray-brown purple mud (shale) efflorescence (R2= -
0.0006), this could be explained by the inhibitory effect 
strengthened in Pmp↔Spv→y path. 
 
Geostatistical analysis: There was a strong spatial 
anisotropy of soil organic carbon density in the study 
area from overall trend analysis. Four directional semi–
variograms which took range and semi–variogram as 
coordinates obtained by scatter diagram and spherical 
model were shown in Fig. 3. Nugget was the intercept 
of fitted curve and vertical axis given by Spherical 
model, as well as the base value. The variation as the 
step of the base value, Theoretical semivariogram 

model parameters for different directions were shown 
in Table 8. 

Different sill value and the range of the theoretical 
semivariogram model (Table 8) suggested a zonal 
anisotropy of SOC density in the study area. The ratio 
of nugget value and base value in the four directions 
ranged from 25% to75%, indicating a strong spatial 
dependence of SOC density in the four directions. In 
the NE-SW (45°) direction (Sill is 1.174, Range is 8.7 
km) the spatial variability of SOCD was the strongest 
and the spatial correlation function of the sample points 
range reached to the minimum. The spatial variability 
of SOCD in NE-SW (45°) and N-S (0°) directions were 
significant. In the W-E (90°) direction (Sill is 0.58 and 
Range is 10.25km) the spatial variability of SOCD was 
the weakest and the spatial correlation function of the 
sample points range is the maximum. Compared to the 
W-E (90°) direction, the spatial variability of SOCD in 
SE-NW (135°) was greater. 

 

  
 

  
 
Fig. 3: Map for Semi-variogram in four orientation: a) 0 °, b) 45°, c) 90°, d) 135° 
 
Table 8: Theoretical semivariogram model parameters for different directions 
Direction Model Nugget (Co) Sill (C+Co) Range (km) Co effect  R2 
N-S (0°) Spherical 0.66 1.128 6.250 0.59 0.884 
NE-SW (45°) Spherical 0.786 1.174 8.700 0.67 0.905 
W-E (90°) Spherical 0.240 0.580 10.25 0.41 0.850 
SE-NW (135°) Spherical 0.210 0.610 6.780 0.34 0.871 
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DISCUSSION 
 
Effect of altitude and TWI on SOCD: SOC density 
increased obviously as the increase of elevation in this 
study is in agreement with the results of Xianfu Cheng 
and Tan (Chen and Xie, 2009; Chuai et al., 2012). 
There were highly positive significant correlations of 
SOC density with elevation, topography wetness index 
and valley; however topography wetness index and the 
distribution probability of valleys decreased with 
increasing elevation. A similar finding was made by 
Wang et al. (2012) in North China, nonetheless, such a 
result was surprising, elevation had a critical effect on 
SOC density and less susceptible to interference from 
other variables. This may be explained by indirect 
determination coefficient of SOC density through 
topography wetness index and valley was -0.0701 and -
0.0496, respectively. Direct determination coefficient of 
SOC density, by contrast, was 0.1253. Other studies 
(Xu et al., 2010) showed that the increase of altitude 
lead to a decrease of temperature, reducing the 
decomposition of organic carbon, which was also one 
of the reasons in favor of organic carbon accumulation. 
Further study will take the temperature into account, 
which is ignored in this study. 

Topographic wetness index had highly 
significantly positive correlation with SOC density 
(0.256**) in this research, which consist with research 
results of Miao et al. (2010), who reported soil organic 
carbon content is high in the great soil moisture area 
lately. Meanwhile, probability distribution of the valley 

was large in the high topography wetness area, 
therefore, the accumulation of SOC may be explained 
by the repetition between topography wetness and 
valley. However, there was a contrasting result in our 
study; total decision coefficient of topographic wetness 
(0.023) on SOC density was not great. It was not 
difficult to find that the effect of topographic wetness 
index through TWI↔Spv→y path on soil organic 
carbon density (0.0321) was greater than the direct 
effect on organic carbon (0.0029). 
 
Effect of soil parent material on SOCD: Purple sand 
and mud (shale) efflorescence had not shown 
significant correlation with SOC density (r = -0.013) 
and gray-brown purple mud (shale) efflorescence 
highly significant correlation (r = -0.032*). However, 
purple sand and mud (shale) efflorescence expressed a 
greatly negative impact on SOC density. A reasonable 
explanation was given by the multivariate statistical 
analysis. In the Pearson correlation, purple sand and 
mud (shale) efflorescence had significant positive 
correlation with elevation (positively correlated with 
SOCD), but negative with clouds weathered shale, 
limestone weathering and river alluvium (positively 
correlated with SOCD). Conversely, significantly 
negative correlation was found between gray-brown 
purple mud (shale) efflorescence and elevation and 
cannot be offset by the negative correlation with 
dolomite weathered material, limestone weathering and 
river alluvium. As the mainly parent material of purple 
(Fig. 4) soil in the study area, gray-brown purple mud

 

 
 
Fig. 4: Maps of parents materials 
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(shale) efflorescence developed into thick bony sandy 
soil may result in more soil erosion, leading to SOC 
decline also (Martin et al., 2010). 

In all soil parent material, the maximum average 
SOC density (3.07kg/m2) distributed in dolomite 
weathering area. As one of the main soil parent 
material, dolomite weathered material weathered into 
yellow soil by the impact between mountainously cold 
climate and coniferous forest. Level of Yellow Soil 
claying is not deep and organic matter accumulates a 
lot, therefore, soil organic carbon density is relatively 
high. 
 
Effect of slope position on SOCD: Slope position 
contains different characteristics of soil properties in 
different topographic positions and becomes an 
important factor in geographical or ecological process 
model (Milne, 1934; Guo et al., 2010). Slope position 
was divided into three categories in the research of Guo 
et al. (2010) and Lu et al. (2013), who reported SOC 
content is highest on the bottom of the slope and lowest 
at the top of the slope lately. In our study, slope 
position was divided into five categories and results are 
in agreement with the consequences of previous studies. 
Moreover, the results suggest that the classification in 
our study can clarify the influence mechanism of SOC 
density and slope positions more accurately. 

Correlations between SOC densities and slope 
position are found to be positive in valley and 
footslope, while negative in ridge, slopeback and 
shoulder. This is necessarily an indication that valley 
and footslope increased SOC accumulation, but others 
decreased. Slope and reddish brown thick mudstone 
shows extremely significant positive correlation with 
SOC density, implying palm red thick mudstone mainly 
distributed in relatively steeper slope. As the maximum 
in direct impact coefficients, valley on SOC density is 
0.8630. It can be assumed that relatively soil erosion 
may result in redistribution of soil and water, leading to 
runoff and sediment rom the top of slope position 
accumulation in low-lying valley area. Consequently, 
more SOC concentrated in bottom of trench. 
 

CONCLUSION 
 

Overall, our study has revealed the average SCOD 
is 2.91 kg/m2, below the national average level of 
cultivated land (3.0 kg/m2) and the total SOC storage is 
1838.75×106kg on 0-20cm surface soil in the study 
area. High-density areas of SOC tend to distribute in 
limestone soil and yellow soil area. Clearly, high 
elevation, high topographic wetness, valley and 
dolomite weathered material have led to SOC density 
accumulation, in which elevation has the strongest 
relationship with SOC density. Reforestation, terracing, 
more organic fertilizer may necessary to increase SOC 
in low altitude, ridge or shoulder area, also no tillage 

and reduced tillage planting mode may necessary to 
increase agricultural soil carbon sequestration capacity. 
Likewise, the spatial anisotropic analysis have shown 
that spatial variability in NE-SW (45°) direction is 
strongest and the spatial correlation function of the 
sample points range reached to the minimum, followed 
by N-S (0°), however, weakest and maximum in the W-
E (90°) direction. Further refinement of the quantitative 
qualitative variables is needed to express a certain 
variable on SOC density. 
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