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Identification of Vinegar Flavor using Electronic Nose☆ 
 

Hong-Biao Zhou 

Faculty of Automation, Huaiyin Institute of Technology, Huai’an, China 
 

Abstract: As one of the most popular condiments, vinegar’s quality has been widely concerned. Discrimination of 

vinegar which is composed of a complex mixture of very similar compositions by chemical analysis means is a 

remaining challenge. In order to explore possibility of identification of vinegar’s quality by electrochemical 

methods, we have developed an electronic nose with gas sensor array of different selectivity composed of eight 

sensors (TGS813, TGS822, TGS826, TGS2600, TGS2602, TGS2610, TGS2611 and TGS2620). The experiment 

process is automatically measured by a virtual testing application platform with LabVIEW, which can realize data 

acquisition, data storage, data processing and so on. The odor’s fingerprint of five different flavor vinegar, including 

white vinegar, mature vinegar, rice vinegar, balsamic vinegar and apple vinegar, are collected using the electronic 

nose. Multivariate statistical analyses, such as Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA), are employed to analyze all of these samples. Meanwhile, the multilayer perceptron (MLP) 

recognition model is established. The results show that both PCA and LDA can distinguish different flavor samples 

and the MLP has achieved higher recognition accuracy. It’s a feasible way to discriminate different flavor vinegar 

with the self-developed electronic nose. 

 

Keywords: Electronic nose, linear discriminant analysis, multilayer perceptron, principal component analysis, 

vinegar 

 

INTRODUCTION 
 

Vinegar is one of the most widespread and 
common acetic acid diluted solution products. Its 
quality directly affects people’s health because vinegar 
is a popular seasoning (Li et al., 2015; Zeng et al., 
2015). Methods of measuring odors can be divided into 
three main types: sensory analysis, chemical analysis 
and electronic nose (Zhang et al., 2008). And these 
methods of analysis are highly accurate and suitable for 
assessment  of  vinegar’s  quality (Jiang et al., 2015; Li 
et al., 2012). The aroma  or flavor is certainly one of 
the most important determinants of vinegar’s quality 
(Jo et al., 2013). So the electronic nose device is 
designed as a simple simulation of human olfaction 
(Peris and Escuder-Gilabert, 2009; Wilson, 2012). 
Generally, the electronic nose system associated with 
pattern recognition algorithms is attractive for a number 
of significant features (Montuschi et al., 2012; 
Falasconi et al., 2012), such as non-invasive detection 
(Hartyáni et al., 2013), a qualitative identification (e.g., 
cluster analysis (Trirongjitmoah et al., 2015)) or 
quantitative calculation (e.g., linear fitting regression 
(Hong et al., 2015), partial least squares regression 
(Yan et al., 2015) of a gas or Quadratic Discriminant 
Analysis (QDA) (Oliveros et al., 2002), Support Vector 
Machines (SVM) (Brudzewski et al., 2004). 

With developments in sensor technology in recent 

years, electronic nose techniques have become valuable 

tools in application areas (Jiang et al., 2015). Neural 

network architecture has been successfully applied to 

many applications, ranging from adaptive signal 

processing to system control. These neural network 

models were proposed, including Feedforward Neural 

Networks (FNN) and Recurrent Neural Networks 

(RNN). They were applied successfully to various real 

world problems (Han et al., 2011; Bao and Zeng, 

2012). As one of the feedforward neural network, 

Multilayer Perceptron (MLP) is by far the most popular 

network with a relatively simple construct, significant 

capabilities and so on. The ability of classification and 

approaching makes MLP applicable to the application 

areas such as quality evaluation and adulteration 

recognition in food detection (Zhang et al., 2014; 

Abbasi et al., 2015). 

The electronic nose device crudely mimics human 

smell that interacts with odor molecules (Baldwin et al., 

2011). In this study, a homemade electronic nose 

system is developed to classify five flavor vinegars. 

Classifications of the electronic nose dataset by the 

MLP and Cluster-then-Label approach based on PCA 

and LDA are compared. 
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Table 1: Basic information of the vinegar samples 

Sample names Raw material HAC/(g·L-1) Fermentation  Origin Number 

White vinegar Water, rice, sugar ≥50.0 Liquid Zhenjiang 1-10 

Mature vinegar Water, glutinous rice, wheat bran ≥54.9 Solid Zhenjiang 11-20 
Rice vinegar Water, rice ≥90.0 Liquid Zhenjiang 21-30 

Balsamic vinegar Water, glutinous rice, wheat bran ≥54.9 Solid Zhenjiang 31-40 

Apple vinegar Apple juice, drinking water / Liquid Yantai 41-50 
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Fig. 1a: Schematic of the electronic nose system 

 

 

Fig. 1b: Sensor array circuit 

 

MATERIALS AND METHODS 
 

Vinegar samples: A total of five different flavor of 

vinegar were purchased from a local big supermarket, 

namely: White Vinegar (WV), Mature Vinegar (MV), 

Rice Vinegar (RV), Balsamic Vinegar (BV) and Apple 

Vinegar (AV). Each of these vinegar samples are about 

500 mL. The basic information of the samples can be 

easily measured. And it is shown in Table 1, including 

sample names, raw material, acetic acid concentration, 

fermentation model, origin place and serial number. 

 

Electronic nose system: Professional sensory panelists 

can identify a significant difference in sample odors, 

but the human nose has a fatigue symptom (Desrochers 

et al., 2002). In this study, the electronic nose system is 

developed independently for measuring and classifying 

vinegar odors. Because the characteristic flavor of 

vinegar is the result of representing a fingerprint of the 

sample (Ubeda et al., 2011). The structure of the 

electronic nose is presented schematically in Fig. 1a. It 

consists of three components: pump and solenoid 

valves unit; sensor array and chamber unit; 

measurement control and identification unit. Eight gas 

sensors with different selectivities are arranged in the 

lid of a 2.5 L air chamber to form the sensor array, 

namely: TGS813, TGS822, TGS826, TGS2600, 

TGS2602,  TGS2610,  TGS2611  and TGS2620 (Figaro  
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Table 2: Mean and standard deviation of measured voltage from each sensor at 180 s (mean±S.D. N = 10) 

Sensor 

Sample values (V) 

------------------------------------------------------------------------------------------------------------------- 

Apple vinegar white vinegar mature vinegar rice vinegar balsamic vinegar 

TGS813 0.53±0.16 0.43±0.09 0.60±0.18 0.14±0.09 0.08±0.07 

TGS822 1.56±0.07 1.97±0.07 1.80±0.05 1.90±0.05 0.86±0.05 

TGS826 1.25±0.17 0.86±0.09 1.44±0.09 0.70±0.06 0.29±0.02 
TGS2600 1.92±0.17 1.80±0.08 1.98±0.14 1.85±0.05 1.00±0.05 

TGS2602 1.51±0.15 1.19±0.10 1.75±0.06 1.05±0.07 0.44±0.03 

TGS2610 1.86±0.24 1.81±0.06 1.97±0.04 1.74±0.06 0.93±0.04 
TGS2611 1.60±0.20 1.20±0.11 1.84±0.08 1.05±0.10 0.40±0.03 

TGS2620 2.58±0.14 2.85±0.03 2.73±0.07 2.69±0.09 1.88±0.07 

 

 

Fig. 2: Virtual testing platform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3: Responses of the gas sensors  

 

Engineering, Osaka, Japan). The measuring circuit of 
each sensor is also shown in Fig. 1b. Series with each 
sensor are connected to the load resistor with selected 
resistance in order to achieve appropriate sensor 
response. 

The odor from the vinegar sample is collected by 
the sensor array for 800 s, the data from the sensor 
array being acquired five data points a second. The 

output voltages of the sensors were converted into 
digital signals with a Multi-channel A/D Converter 
(STM32) and sent to PC LabVIEW for processing 
(Trirongjitmoah et al., 2015). The measurement process 
is automatically controlled by a virtual testing platform 
which developed with LabVIEW (National Instrument) 
as shown in Fig. 2. 
 
Data acquisition: Sensors collect the data and convert 
it into a more  suitable  electrical  signal pattern (Scott 
et al., 2007). Changes in the vinegar odor 
concentrations are responsible for changes in the gas 
sensor output voltages. In Fig. 3, the sensor response 
signals 180 s after the start of the measurement are 
selected as being representative and are used to classify 
the different flavor vinegars. 

Table 2 shows the means and the standard 
deviations of the measured response signal of each 
sensor at 180 s. As is shown in Table 2, these response 
signals can be measured with high repeatability based 
on this developed system. Figure 4 shows the 
normalized response signals for the eight sensors during 
the last second of a measurement with a radar graph. 
 

METHODS 
 

Principal Component Analysis (PCA): PCA used for 

reducing the dimensionality of data is a one of the well-

known multivariate statistics methods (Trirongjitmoah  
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Fig. 4: Radar graph of the 8 sensors. S1 = TGS813, S2 = 

TGS822, S3 = TGS826, S4 = TGS2600, S5 = 

TGS2602, S6 = TGS2610, S7 = TGS2611, S8 = 

TGS2620 

 

et al., 2015). And it is a feature extraction way to 

explore underlying data structure (Hong et al., 2015). In 

this study, the data set of different flavor vinegar 

samples will be transformed into two-dimensional (2D) 

and three-dimensional (3D) coordinates, by employing 

two and three main components of PCA, respectively. 

 

Linear Discriminant Analysis (LDA): LDA is 

supervised approach that constructs discriminant 

function  through  linear  combination  of  data  (Hong 

et al., 2015). The purpose of LDA is to find a linear 

transformation to achieve maximum class 

discrimination (Guan et al., 2014). LDA has been 

widely used to build classification model with 

electronic nose and it provides a feasible method for 

quantitative analysis (Trirongjitmoah et al., 2015). In 

this study, the data set of different flavor vinegar 

samples will be transformed into 2D and 3D 

coordinates, by employing two and three main normal 

variables of LDA, respectively. 

 

Multilayer Perceptron (MLP): MLP is a modified 

standard linear perceptron and distinguish non-linearly 

separable data (Cybenko et al., 1989). MLP has been 

used to solve some difficult and diverse problems 

successfully, for which error back-propagation is the 

most popular training algorithm. To illustrate the 

classification method fully, the MLP model with Multi-

Input Multi-Out (MIMO) is chosen (Abbasi et al., 

2015). The architectural graph of MLP model with one 

hidden layer is shown in Fig. 5. Without loss of 

generality, there are M nodes in the input layer, N  

nodes in the hidden layer and Q  nodes in the output 

layer. 

The input-output and activation function of each 

layer are described in the following: 

 

Input layer: There are M nodes in input layer. By these 

nodes, the input variables which represent all attributes 

of data are inputted to the MLP. The output values of 

input nodes can be expressed as: 

 

, 1, 2, , ,i iu x i M= = L                              (1) 

 

where, ui is the ith output value and the input vector is 

given by  

 

1 2
[ , , ]

M
X x x x= L                                                  (2) 

 

Hidden layer: There are N nodes in this layer. By each 

hidden node, the MLP’s input nodes connect with 

output nodes. The output values of hidden nodes are: 
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Fig. 5: The multilayer perceptron (MLP) structure 
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Fig. 6a: 2D  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 6b: 3D PCA score scatter plots 

 

where, f(x) = (1 + e
-x

)
-1

, 
jφ  is the output value of jth 

node, 
1 2[ , , ]Nφ φ φ= T

Lφφφφ are the output vector of the 

hidden layer whose dimension is N × 1 and wij  is the 
weight value connecting the ith input node with the jth 
in the hidden layer, W = [wg1, wg2, L, wgN] whose 
dimension is M × N  and Wgj = [w1j, w2j, wMj]

T
. 

 
Output layer: There are Q nodes in this layer. The 
output value of each output node is given by: 
 

1

, 1, 2, , 1,2, ,
N

q jq j

j

y v j N q Qϕ
=

= = =∑ L L             (4) 

 
where, yq is the output value of the qth node in the 
output layer, y = [y1, y2, yQ] are the MLP model’s output 
vector, vjq is the weight connecting the jth node in the 
hidden layer with the qth output node, V = [vg1, vg2, 
vgQ] whose dimension is N × Q and vq = [v1q, v2q, vNq]

T
. 

In order to estimate and train the MLP model, the 
MSE for the output nodes is defined as: 
 

2

1 1

1
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q q
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= −∑∑                             (5) 

where, yq(t) and dq(t) are the output and desired output 

of the qth node in the output layer calculated at time t, 

respectively and T is the total number of samples. 

 

RESULTS AND DISCUSSION 
 

Statistical analysis: Figure 6 depicts the PCA score 

scatter plot for vinegar of five flavors. In the 2D Fig. 

6a, the contribution rats of the first Principal 

Component (PC1) and the second principal component 

(PC2) are 83.98% and 11.60%, respectively. Several 

errors in classification are observed between white 

vinegar and rice vinegar, also between mature vinegar 

and balsamic vinegar. In the 3D Fig. 6b, the 

contribution rat of the first three PCs reaches 98.87% 

and all of the samples are clustered into their respective 

groups except between white vinegar and rice vinegar 

(there are some crossing points). 

Figure 7 demonstrates the LDA score scatter plot 

for five flavor vinegars. As is shown in the 2D figure 

(Fig. 7a), the contribution rats of the first normal 

variable (LD1) and the second normal variable (LD2) 

are 34.20% and 33.75%, respectively. No confusions or 

errors in classification are observed among the three 

flavors vinegar (i.e., white vinegar, rice vinegar and 

apple vinegar) except between mature vinegar and 

balsamic vinegar. As is shown in the 3D figure (Fig. 

7b), the contribution rat of the first three LDs exceeds 

85% and all of the samples are successfully clustered 

into their respective groups. 

 

Classification using MLP: Before establishing MLP 

recognition model, each sample in the feature data set is 

attached a tag, which white vinegar is defined as 10000, 

mature vinegar as 01000, rice vinegar as 00100, 

balsamic vinegar as 00010, apple vinegar as 00001. To 

reduce errors caused by too little sample data, 10 times 

ten-fold cross-validation are used in experiments. The 

50 samples of data set are divided into 10 parts that 

every part includes 5 samples. In a ten-fold cross-

validation, every part is selected as a test set in turn and 

the remaining 9 parts as the training set. Finally, all 

samples are sent into the recognition model for testing. 

After using 10 times ten-fold cross-validation, the 

training and testing set numbers reach 4500 and 500, 

respectively. 

The test results are shown in Table 3. As can be 

seen from the table, for each 100 test samples of 

vinegar, the numbers of vinegar samples which are 

identified correctly are 87, 99, 100 and 100 and the total 

accuracy reaches 97.20%. From the perspective of 

specificity, no other specimen is identified mistakenly 

as white vinegar and apple cider vinegar, while, 10, 3, 1 

samples are classified mistakenly as mature vinegar, 

rice vinegar, balsamic vinegar, respectively and the 

total  specificity  reaches  97.39%.  Therefore,  the MLP  
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Table 3: Results of MLP 

Sample 

Recognition results 

------------------------------------------------------------------------------------------------------------------------- Average 

accuracy% WV MV RV BV AV 

WV 87 10 3 0 0 87 

MV 0 99 0 1 0 99 

RV 0 0 100 0 0 100 
BV 0 0 0 100 0 100 

AV 0 0 0 0 100 100 

Specificity% 100 90.83 97.09 99.01 100 97.39/97.20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7a: 2D 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7b: 3D LDA score scatter plots 

 

classification model has a higher classification 

accuracy. 

 

CONCLUSION 

 

In conclusion, electronic nose is developed to 

identify different flavor vinegar based on neural 

networks. Fingerprint information of vinegar can be 

acquired effectively with sensor arrays which are 

different characteristic and highly sensitive. LabVIEW 

is used to control the measurement process. PCA and 

LDA are used to recognize vinegar samples and MLP 

model has achieved high classification accuracy rate. It 

provides a better quality analysis tools and the online 

monitoring for vinegar fermentation process maybe 

possible. 

ACKNOWLEDGMENT 
 

This study was supported by the science and 
technology projects fund of Huai’an City under Grant 
HAG2014001. 

 
REFERENCES 

 
Abbasi, H., S.M. Seyedain Ardabili, M.A. 

Mohammadifar and Z. Emam-Djomeh, 2015. 
Comparison of trial and error and genetic algorithm 
in neural network development for estimating 
farinograph properties of wheat-flour dough. Nutr. 
Food Sci. Res., 2(3): 29-38. 

Baldwin, E.A., J. Bai, A. Plotto and S. Dea, 2011. 
Electronic noses and tongues: Applications for the 
food and pharmaceutical industries. Sensors, 11(5): 
4744-4766. 

Bao, G. and Z. Zeng, 2012. Analysis and design of 
associative memories based on recurrent neural 
network with discontinuous activation functions. 
Neurocomputing, 77(1): 101-107.  

Brudzewski, K., S. Osowski and T. Markiewicz, 2004. 
Classification of milk by means of an electronic 
nose and SVM neural network. Sens. Actuat. B-
Chem., 98(2-3): 291-298. 

Desrochers, R., P. Keane, S. Ellis and K. Dowell, 2002. 
Expanding the sensitivity of conventional 
analytical techniques in quality control using 
sensory  technology.  Food  Qual.  Pref., 13(6): 
397-407.  

Falasconi, M., I. Concina, E. Gobbi, V. Sberveglieri, A. 
Pulvirenti and G. Sberveglieri, 2012. Electronic 
nose for microbiological quality control of food 
products. Int. J. Electrochem., 2012: 12.  

Guan, B., J. Zhao, H. Lin and X. Zou, 2014. 
Characterization of volatile organic compounds of 
vinegars with novel electronic nose system 
combined with multivariate analysis. Food Anal. 
Method., 7(5): 1073-1082. 

Han, M., J. Fan and J. Wang, 2011. A dynamic 

feedforward neural network based on Gaussian 

particle swarm optimization and its application for 

predictive control. IEEE T. Neural Networ., 22(9): 

1457-1468.  

Hartyáni, P., I. Dalmadi and D. Knorr, 2013. Electronic 

nose investigation of Alicyclobacillus 

acidoterrestris inoculated apple and orange juice 

treated by high hydrostatic pressure. Food Control, 

32(1): 262-269.  

WV

MV

RV

BV
AV

0.4

0.2

0

-0.2

-0.4
-1 0 0.5 1 1.5-0.5

18

2930

21
22
232425

28
27

1
2

3

4
5

6
7

89
10

11
12

13

141516

1819

21
41

424344
45 46

47
17
3634
27
333231

4035
38

484950

1.5 1 0.5 0 -0.5 -1

0.5

0

-0.5

0.4

0.2

0

-0.2 29

30
28
27
262521
2324

22

6
71

825
4 9
3

10
-0.4

414243444546

47484946 50
12

11161317
15

19141820

3132
333435

36
37

38

WV
MV
RV
BV
AV



 

 

Res. J. Appl. Sci. Eng. Technol., 13(4): 154-160, 2017 

 

160 

Hong, X., J. Wang and G. Qi, 2015. E-nose combined 

with chemometrics to trace tomato-juice quality. J. 

Food Eng., 149: 38-43. 

Jiang, H., H. Zhang, Q. Chen, C. Mei and G. Liu, 2015. 
Recent advances in electronic nose techniques for 
monitoring of fermentation process. World J. 
Microb. Biot., 31(12): 1845-1852.  

Jo, D., G.R. Kim, S.H. Yeo, Y.J. Jeong, B.S. Noh and 
J.H. Kwon, 2013. Analysis of aroma compounds of 
commercial cider vinegars with different acidities 
using SPME/GC-MS, electronic nose, and sensory 
evaluation. Food Sci. Biotechnol., 22(6): 1559-
1565.  

Li, S., X.R. Li, G.L. Wang, L.X. Nie, Y.J. Yang, H.Z. 
Wu, F. Wei, J. Zhang, J.G. Tian and R.C. Lin, 
2012. Rapid discrimination of Chinese red ginseng 
and Korean ginseng using an electronic nose 
coupled with chemometrics. J. Pharmaceut. 
Biomed., 70: 605-608.  

Li, S., P. Li, F. Feng and L.X. Luo, 2015. Microbial 
diversity and their roles in the vinegar fermentation 
process. Appl. Microbiol. Biot., 99(12): 4997-
5024.  

Montuschi, P., N. Mores, A. Trové, C. Mondino and 
P.J. Barnes, 2012. The electronic nose in 
respiratory medicine. Respiration, 85(1): 72-84.  

Oliveros, M.C.C., J.L.P. Pavón, C.G. Pinto, M.E.F. 
Laespada, B.M. Cordero and M. Forina, 2002. 
Electronic nose based on metal oxide 
semiconductor sensors as a fast alternative for the 
detection of adulteration of virgin olive oils. Anal. 
Chim. Acta, 459(2): 219-228.  

Peris, M. and L. Escuder-Gilabert, 2009. A 21st century 
technique for food control: Electronic noses. Anal. 
Chim. Acta, 638(1): 1-15.  

Scott, S.M., D. James and Z. Ali, 2007. Data analysis 
for electronic nose systems. Microchim. Acta, 
156(3-4): 183-207. 

Trirongjitmoah, S., Z. Juengmunkong, K. Srikulnath 

and P. Somboon, 2015. Classification of garlic 

cultivars using an electronic nose. Comput. 

Electron. Agr., 113: 148-153.  

Ubeda, C., R.M. Callejón, C. Hidalgo, M.J. Torija, A. 

Mas, A.M. Troncoso and M.L. Morales, 2011. 

Determination of major volatile compounds during 

the production of fruit vinegars by static headspace 

gas chromatography–mass spectrometry method. 

Food Res. Int., 44(1): 259-268. 

Wilson, A.D., 2012. Review of electronic-nose 

technologies and algorithms to detect hazardous 

chemicals in the environment. Proc. Technol., 1: 

453-463.  

Yan, J., X. Guo, S. Duan, P. Jia, L. Wang, C. Peng and 

S. Zhang, 2015. Electronic nose feature extraction 

methods: A review. Sensors, 15(11): 27804-27831.  

Zeng, J., X. Cao, Y. Liu, J. Chen and K. Ren, 2015. A 

single cataluminescence sensor based on spectral 

array and its use in the identification of vinegars. 

Anal. Chim. Acta, 864: 64-73.  

Zhang, Q., S. Zhang, C. Xie, C. Fan and Z. Bai, 2008. 

‘Sensory analysis’ of Chinese vinegars using an 

electronic nose. Sensor. Actuat. B-Chem., 128(2): 

586-593. 

Zhang, Y., S. Wang, G. Ji and P. Phillips, 2014. Fruit 

classification using computer vision and 

feedforward neural network. J. Food Eng., 143: 

167-177. 

 

 

 

 

 

 

 


