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Abstract: To evaluate the possibility of using visible and near-infrared spectroscopy for the determination of SSC, 
TSC, TAC and water content in yellow peach, 60 yellow peaches with different maturity were hand-harvested from 
an orchard in Suzhou city, China and spectral measurements were done with an ASD FieldSpec 3 Portable 
Spectroradiometer (The wavelengths range of 350-2500 nm), on 17 August 2011. In this study, the contents of 
internal quality with different maturity differ greatly; Total Sugar Content (TSC) is 3.828-26.37%, Total Acid 
Content (TAC) is 0.383-0.961%, Soluble Solids Content (SSC) is 9.1-12.9° Brix and water content is 81.211-
90.752%. We analyzed the correlation between TSC, TAC, SSC and water content and the two indices of spectral 
data. These were the reciprocal-logarithm-transformed reflectance (log (1/R)) and the first-order derivative of 
reciprocal-logarithm-transformed reflectance (dlog (1/R)). The results showed that the spectra of yellow peach had 
common spectral characteristics and the pattern of the absorption curves was similar to that for other fruits. The 
first-order derivative of reciprocal-logarithm-transformed reflectance (dlog (1/R)) showed stronger correlation for 
some wavelengths. These wavelengths with stronger correlation were selected for the sensitive wavelengths and 
were used for the model calibration based on Multiple Linear Regression (MLR). TSC, TAC, SSC and water content 
of yellow peach were predicted at each sampling point using the multiple line models. Overall, although the TAC 
determination still needs to be improved, the determination of TSC, SSC and water content in yellow peach fruits by 
ASD near-infrared spectral analysis (350-2500 nm) was still successful (R

2
>0.61) and the corresponding RMSEs of 

2.32, 0.44 and 0.85%, respectively, showing that the spectroscopy has the ability to rapidly and non-destructively 
determine the internal quality of yellow peach. 
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INTRODUCTION 

 
China is the most important producer of yellow 

peach in the world. It is the country where yellow peach 
originated and it has grown in China for over 3000 
years. Yellow peach has enough nutrient content and it 
is rich in antioxidants, dietary fibers and trace elements 
(such as selenium and zinc), which is directly beneficial 
to people’s health. With the development of the living 
standard of the people, recently, the concern about fruit 
quality is growing all over the world and consumers are 
paying more attention to the internal quality attributes 
of fruits (such as flavors and sugar content etc.), so it is 
more necessary to develop fast and efficient techniques 
to accomplish fruit quality determination (Cen and He, 
2007). 

Compared with the traditional methods of chemical 
analyses, visible and near-infrared spectroscopy is a 
reliable, rapid, nondestructive, chemical-free technique, 
takes less time and is easily used in continuous fruit 
quality evaluation. Visible and near-infrared 

spectroscopy includes the visible spectra that mainly 
contain the color information and near-infrared spectra 
that mainly correspond to C-H, O-H and N-H vibrations 
(Osborne, 2000). Spectroscopy has previously been 
used as a effective method to detect the Soluble Solids 
Content (SSC), Total Sugar Content (TSC) and dry 
matter content of fruits, such as the apple (Liu and 
Ying, 2005; Harker et al., 2008), pear (Nicolaï et al., 
2008), grape (Cozzolino et al., 2008, 2011), mango (Jha 
et al., 2005), kiwifruit (Schaare and Fraser, 2000), 
orange (Cayuela, 2008), apricot (Chen and Zhang, 
2006), jujube (Wang  et  al., 2011), mandarin (Gómez 
et  al., 2006;  Sun  et  al.,  2011), strawberry (ElMasry 
et al., 2007), mulberry (Huang et al., 2011). Moreover, 
there are also many researches on peach based on 
visible and near-infrared spectroscopy. For example, 
the best model for SSC and PH had a correlation 
efficient of 0.96, 0.95 and a standard error of prediction 
of 0.534, 0.124, a bios of 0.052, 0.018, respectively in 
honey peach (Liu and Ying, 2004); the study results 
indicated that  independent  component  analysis  was a  
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Fig. 1: Sampling and labeling of yellow peach, on 17 August 

2011 

 
powerful way for the selection of sensitive wavelength 
and spectroscopy incorporated to least squares-support 
vector machine was successful for the accurate 
determination  of  SSC  and  pH  value in peach (Shao 
et al., 2011). Although numerous research articles have 
been published on internal quality determination of 
many fruit cultivars, none has specifically targeted the 
yellow peach. Researches published are usually focused 
on the SSC and TSC of fruit, rarely involving Total 
Acid Content (TAC) and water content. Actually, acid 
content and water content also have a great effect on 
their qualities and flavors. 

Based on visible and near-infrared spectroscopy, 

this study describes spectral characteristics of the 

yellow peach and gives the results of a correlation 

analysis between the quality parameters (TSC, TAC, 

SSC and water content) and two indices of spectral 

data. The objectives of the present study were to 

identify the effective wavelengths that have the 

maximum discriminatory capability and to derive a 

discriminant function using these wavelengths in 

quality determination of yellow peach. 

 

MATERIALS AND METHODS 

 

Sixty yellow peaches were used to evaluate and 

develop visible and near-infrared models for quality 

determination by means of reflectance spectra. All 

yellow peaches with different maturity were hand-

harvested from an orchard in Suzhou city, China and 

every sample was labeled before spectroscopic 

measurement, on 17 August 2011(Fig. 1). 

Immediately after recording the spectrum, the 

quality parameters of yellow peach (TSC, TAC, SSC 

and water content) were determined in the following 

methods. After yellow peach samples were ground and 

filtered to juice, the TSC was measured by anthrone 

colorimetric method (first the soluble sugar of fruit is 

extracted and anthrone reagent is added, then the 

absorbance of mixture of soluble sugar and anthrone 

reagent can be measured by 721-spectrophotometer); 

the TAC was measured by the titration and which can 

be calculated by the concentration of standard alkali 

solution consumed; The SSC was measured by an 

Abbebenchtop refractometer (Model: WAY-2S, 

Shanghai Precision and Scientific Instrument Co. Ltd., 

Shanghai, China). The refractive index accuracy is 

±0.0002 and the °Brix (%) range is 0-95% with 

temperature correction; the water content of yellow 

peach was measured by direct drying method. 

 

Methods: Spectral measurements were done with an 

ASD FieldSpec 3 Portable Spectroradiometer. Before 

the actual measurement, the instrument was calibrated 

with a standard whiteboard. The probe was positioned 

at a distance of approximately 10 mm from the surface 

of the yellow peach. The average spectral distribution 

for each sample was the average of 30 scans which 

were made at three positions around the equator of the 

fruit, with 10 scans at each position. The wavelengths 

of instrument range are from 350 to 2500 nm. Over the 

region of 350-1000 nm, the spectral sampling interval 

was 1.4 nm with a wavelength width of 3 nm; whereas 

between 1000 and 2500 nm, the spectral sampling 

interval was 2 nm with a wavelength width of 7 nm. 

The preprocessing was carried out using 

"ViewSpec Pro V5.6" (ASD, American). This study 

used two indices of spectral data, namely the 

reciprocallogarithm-transformed reflectance (log (1/R)) 

and the first-order derivative of reciprocal-logarithm-

transformed reflectance (dlog (1/R)). dlog (1/R) was 

calculated by: 

 

� log (1/	(
�))  ≈
���(�/�(����))� ��� (�/�(����))

���������
   (1) 

 

where, λi, λi+1 and λi-1 were the wavelengths and R (λi), 

R(λi+1) and R(λi-1) were the reflectances at these 

wavelengths, respectively. 

The software packages for data analysis and 

representation included SPSS 13.0 and Microsoft Excel. 

The correlation coefficients (r) between the quality 

parameters and the indices of reflectance were used to 

judge the effectiveness of sensitive wavelengths. 

 
Analysis methods: Multiple Linear Regression (MLR) 

is a commonly used calibration algorithm which is 

simple and easy to interpret. However it fails when 

variables are more than samples and is easily affected 

by the collinearity between the variables (Naes and 

Mevik, 2001). In this study the variable number of full 

visible and near-infrared spectra was larger than 

samples. Therefore, it was not possible to run MLR 

directly and the effective variable selection was 

necessary before MLR models establishment. Selected 

variables with less collinearity would be helpful to 

improve the MLR models. The optimal band 

combination was determined by the lowest value of 

predicted residual error sum of squares. The prediction 
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performance was evaluated by the correlation 

coefficients (r) and Root Mean Square Error (RMSE). 

The best model should be the one with the smallest 

RMSE and the largest r. 

 

RESULTS AND DISCUSSION

 

Typical visible and near-infrared spectra of yellow 

peach is shown in Fig. 2. The pattern of the absorption 

curves is similar to that for other fruit such as orange 

(Magwaza et al., 2012) although position and 

magnitude of the peaks are fruit specific. Note that we 

did not use the spectral range of 350-400 nm and 2350

2500 nm (Fig. 2) for next analysis because the noise 

within these region can distort the reflectance signals 

(Yi et al., 2007). From the visible region (400

a continuous decrease in absorbance with the minimum 

at 603 nm is observed. High absorbance observed at 

676 nm is indicative of red absorbing pigments, 

particularly chlorophyll that gives the fruit its 

characteristically green color (Gómez 

After this peak, there is a very sharp drop in absorbance 

as the spectrum enters the near-infrared region. Gómez 

et al. (2006) estimated this drop to be 12

720 to 910 nm, the absorbance spectrum stays relatively 

flat until a prominent peak centered at 978 nm appears. 

This peak is most probably due to wat

arbohydrate since they absorb strongly at 970 nm 

(Williams and Norris, 1987; McGlone and 

1998; Williams and Norris, 2001). Other three peaks 

related to the strong water absorbance bands exist 

between 1200, 1450 and 1950 nm (Williams and 

Norris, 2001) and in yellow peach these water 

absorption peaks occur at 1190, 1454 and 1937 nm

respectively.  

The results of the laboratory analyses are 

summarized in Table 1. Table 1 show that the contents 

of these four parameters with different maturity dif

greatly; total sugar content is 3.828-26.37%, total acid 

content is 0.383-0.961%, soluble solids content is 9.1

12.9° Brix (%) and water content is 81.211

We did 8 groups of correlation analysis based on the 

four quality parameters (TSC, TAC, 

content) and the two indices of spectral data. Based on 

these analyses, we produced graphs of the correlations 

between each of the parameters and types of spectral 

data (Fig. 3 to 6). 

The positive correlations between TSC, TAC and 

log (1/R) (Fig. 3 and 4) are in the visible and near

infrared regions (400-2350 nm) of the spectrum and the 

negative correlations between water content and log

(1/R) is in the most of bands. There are no significant 

correlations between TSC, TAC, SSC, water

and log (1/R) for any wavelengths. For TAC and dlog

(1/R) (Fig. 4), the correlation coefficient is >0.5 for 

wavelengths 608, 619 and 702 nm, respectively
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coefficients (r) and Root Mean Square Error (RMSE). 

The best model should be the one with the smallest 

ESULTS AND DISCUSSION 

spectra of yellow 

peach is shown in Fig. 2. The pattern of the absorption 

curves is similar to that for other fruit such as orange 

., 2012) although position and 

magnitude of the peaks are fruit specific. Note that we 

400 nm and 2350-

2500 nm (Fig. 2) for next analysis because the noise 

within these region can distort the reflectance signals 

., 2007). From the visible region (400-700 nm), 

a continuous decrease in absorbance with the minimum 

nm is observed. High absorbance observed at 

676 nm is indicative of red absorbing pigments, 

particularly chlorophyll that gives the fruit its 

(Gómez et al., 2006). 

After this peak, there is a very sharp drop in absorbance 

infrared region. Gómez 

. (2006) estimated this drop to be 12-fold. From 

720 to 910 nm, the absorbance spectrum stays relatively 

at 978 nm appears. 

This peak is most probably due to water and 

arbohydrate since they absorb strongly at 970 nm 

, 1987; McGlone and Kawano, 

. Other three peaks 

related to the strong water absorbance bands exist 

between 1200, 1450 and 1950 nm (Williams and 

, 2001) and in yellow peach these water 

absorption peaks occur at 1190, 1454 and 1937 nm, 

The results of the laboratory analyses are 

summarized in Table 1. Table 1 show that the contents 

of these four parameters with different maturity differ 

26.37%, total acid 

uble solids content is 9.1-

Brix (%) and water content is 81.211-90.752%. 

We did 8 groups of correlation analysis based on the 

four quality parameters (TSC, TAC, SSC and water 

content) and the two indices of spectral data. Based on 

these analyses, we produced graphs of the correlations 

between each of the parameters and types of spectral 

The positive correlations between TSC, TAC and 

(Fig. 3 and 4) are in the visible and near-

2350 nm) of the spectrum and the 

negative correlations between water content and log 

) is in the most of bands. There are no significant 

correlations between TSC, TAC, SSC, water content 

) for any wavelengths. For TAC and dlog 

) (Fig. 4), the correlation coefficient is >0.5 for 

, respectively and the  

Table 1: The summary statistics on the quality parameters content in 

yellow peach 

Quality indexes Range (%) Mean (%)

TSC 3.828-26.370 10.516

TAC 0.383-0.961 0.607
SSC 9.100-12.900 11.36

Water content 81.210-90.750 83.725

 

 
Fig. 2: A typical absorbance (log (1/R

peach in the wavelength from 350 to 2500 nm

 

 

 
Fig. 3: Correlation between TSC and a log (1/

 

wavelength with the strongest correlation is 619 nm 

with r = 0.542. For TSC and dlog 

are the correlation coefficients >0.4 for

(1014 and 2174 nm, respectively). For SSC and dlog

(1/R) (Fig. 5), the maximum correlation wavelength is 

at 1705 nm with r = 0.454. Figure 6 shows that the 

The summary statistics on the quality parameters content in 

Mean (%) Variation (%) 

10.516 13.855 

0.607 0.015 
11.360 0.715 

83.725 2.229 

 

R) spectrum of yellow 

wavelength from 350 to 2500 nm 

 

 

Correlation between TSC and a log (1/R), b dlog (1/R) 

with the strongest correlation is 619 nm 

 (1/R) (Fig. 3), there 

>0.4 for two bands 

. For SSC and dlog 

) (Fig. 5), the maximum correlation wavelength is 

at 1705 nm with r = 0.454. Figure 6 shows that the 
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Fig. 4: Correlation between TAC and a log (1/

 

 
Fig. 5: Correlation between SSC and a log (1/

 

 
Fig. 6: Correlation between water content and a log (1/

 

wavelength with the strongest correlation is 1017 nm 

with r = -0.44 for water content. 

The sensitive wavelengths reflecting the 

characteristics of spectra for quality parameters were 

obtained based on correlation coefficients. After 

correlation coefficients were sorted between the quality 

parameters and the indices of reflectance (F

the band with optimal correlation coefficient was 

selected first and suboptimum band was selected in turn 

in sensitive wavelengths analysis. In addition, the only 

peak band was selected in a interval with strong 

correlation, which was used to overcome the problem 
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C and a log (1/R), b dlog (1/R) 

  

C and a log (1/R), b dlog (1/R) 

  

and a log (1/R), b dlog (1/R) 

strongest correlation is 1017 nm 

The sensitive wavelengths reflecting the 

characteristics of spectra for quality parameters were 

obtained based on correlation coefficients. After 

correlation coefficients were sorted between the quality 

parameters and the indices of reflectance (Fig. 3 to 6), 

the band with optimal correlation coefficient was 

selected first and suboptimum band was selected in turn 

in sensitive wavelengths analysis. In addition, the only 

peak band was selected in a interval with strong 

overcome the problem 

of collinearity encountered with linear multivariate least 

squares regression models. According to existing 

experience rules, the ratio of the number of samples and 

variables is greater than or equal to 5 in MLR analysis 

(Shao et al., 2011). So, the number of variables is not 

beyond 12 in modeling set of 60 samples. The selection 

results of sensitive wavelengths are summarized in 

Table 2. From Table 2, SSC and water content have 

same sensitive wavelengths such as 1017, 1112, 1933 

and 2251 nm and similar sensitive wavelengths such as 

near 1420 and 1445 nm, respectively

there is a relationship between water

 

 

 

of collinearity encountered with linear multivariate least 

squares regression models. According to existing 

experience rules, the ratio of the number of samples and 

variables is greater than or equal to 5 in MLR analysis 

2011). So, the number of variables is not 

beyond 12 in modeling set of 60 samples. The selection 

results of sensitive wavelengths are summarized in 

Table 2. From Table 2, SSC and water content have 

such as 1017, 1112, 1933 

51 nm and similar sensitive wavelengths such as 

respectively which shows that 

water content  and  SSC.  
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Table 2: The selection results of sensitive wavelengths based on 
correlation coefficients 

Quality indexes Sensitive wavelengths (nm)  

TSC 420, 467, 866, 983, 1014, 1139, 1454, 1702, 1820, 
1976, 2065, 2174 

TAC 498, 570, 619, 702, 1112, 1318, 1387, 1442, 1510, 
1572, 1863, 2176 

SSC 408, 723, 1017, 1112, 1420, 1445, 1705, 1812, 
1933, 2064, 2199, 2251 

Water content 672, 711, 1017, 1112, 1169, 1379, 1419, 1442, 
1933, 2133, 2173, 2251 

 
Table 3: The calibration results of TSC, TAC, SSC and water content 

based on MLR with selected variables 

Quality indexes LVs r 

TSC 10 0.78 
TAC 7 0.74 
SSC 10 0.85 
Water content 9 0.82 

LVs: The number of latent variables 

 
From Fig. 1, water absorption peaks occur at 978, 1190, 
1454 and 1937 nm in yellow peach. Therefore, the 
wavelength regions of 1400-1500 and 1900
are affected by absorption related to water vapor. From 
Table 2, the absorption peak of TSC (866 nm) is 
associated with a third overtone stretch of CH and 
second and third overtones of OH around 700~900 nm 
which was referred by Rodriguez-Saona 
their article about rapid analysis of sugars in fruit juices 
by Fourier transform-NIR spectroscopy. 
below 700 nm were mainly attributed to the color or 
shape of yellow peach. Six hundred and twenty seven 
nm (Huang et al., 2011) and 696 nm (Hong
have been identified as a useful wavelength for the 
acidity of fruits determination, respectively, which are 
similar to the sensitive wavelengths of TAC (619 and 
702 nm) in yellow peach. 

 
Fig. 7: Visible and near-infrared prediction results of 60 samples from the MLR models using the first

reciprocal-logarithm-transformed reflectance for TSC (a), TAC (b), SSC (c) and water content (d)
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The selection results of sensitive wavelengths based on 

420, 467, 866, 983, 1014, 1139, 1454, 1702, 1820, 

498, 570, 619, 702, 1112, 1318, 1387, 1442, 1510, 

408, 723, 1017, 1112, 1420, 1445, 1705, 1812, 

672, 711, 1017, 1112, 1169, 1379, 1419, 1442, 

The calibration results of TSC, TAC, SSC and water content 

RMSE (%)

2.32 
0.08 
0.44 
0.85 

Fig. 1, water absorption peaks occur at 978, 1190, 
1454 and 1937 nm in yellow peach. Therefore, the 

1500 and 1900-2000 nm 
are affected by absorption related to water vapor. From 
Table 2, the absorption peak of TSC (866 nm) is 
associated with a third overtone stretch of CH and 
second and third overtones of OH around 700~900 nm 

Saona et al. (2001) in 
their article about rapid analysis of sugars in fruit juices 

NIR spectroscopy. Wavelengths 
below 700 nm were mainly attributed to the color or 

Six hundred and twenty seven 
696 nm (Hong et al., 2010) 

wavelength for the 
acidity of fruits determination, respectively, which are 
similar to the sensitive wavelengths of TAC (619 and 

The study makes full use of the advantage

MLR which is simple and easily interpreted and avoids 

the disadvantages of MLR. The selected variables were 

set as the inputs of MLR. The results are shown in 

Table 3. 

For the prediction of TSC, therefore, MLR 

analyses using the first-order derivative

logarithm-transformed reflectance indicate that the 

wavelength combination (2174, 1014, 1454, 983, 1820, 

2065, 1702, 420, 866 and 467 nm, respectively

most suitable for estimating TSC in the yellow peach. 

Compared with the other models, the linear model has 

the smallest RMSE (2.32 %) and the TSC derived from 

this model is strongly correlated with the measured 

TSC (r = 0.78). 

From Fig. 7, the results indicate that the optimal 

method of prediction for TAC is with the model with 9 

variables of the first order derivative of reciprocal

logarithm-transformed reflectance (Table 3). The 

results show that it is possible to predict TAC of the 

yellow peach from spectral measurements.

For the prediction of SSC, the ten

model has the smallest RMSE (0.44 %) and the SSC 

derived from this model is strongly correlated with the 

measured SSC (r = 0.85). And then, the water content 

of yellow peach can be also predicted from the first

order derivative of reciprocal-logarithm

reflectance (RMSE = 0.85% and r = 0.82).

TSC, TAC, SSC and water content of yellow peach 

were predicted at each sampling point using the 

multiple line regression equations determined above

(Table 3). The relationships between

 

 
 

 

infrared prediction results of 60 samples from the MLR models using the first

transformed reflectance for TSC (a), TAC (b), SSC (c) and water content (d) 

The study makes full use of the advantages of 

MLR which is simple and easily interpreted and avoids 

the disadvantages of MLR. The selected variables were 

set as the inputs of MLR. The results are shown in 

For the prediction of TSC, therefore, MLR 

order derivative of reciprocal-

transformed reflectance indicate that the 

wavelength combination (2174, 1014, 1454, 983, 1820, 

, respectively) are the 

most suitable for estimating TSC in the yellow peach. 

els, the linear model has 

the smallest RMSE (2.32 %) and the TSC derived from 

this model is strongly correlated with the measured 

From Fig. 7, the results indicate that the optimal 

method of prediction for TAC is with the model with 9 

variables of the first order derivative of reciprocal-

transformed reflectance (Table 3). The 

results show that it is possible to predict TAC of the 

yellow peach from spectral measurements. 

For the prediction of SSC, the ten-variables linear 

has the smallest RMSE (0.44 %) and the SSC 

derived from this model is strongly correlated with the 

measured SSC (r = 0.85). And then, the water content 

of yellow peach can be also predicted from the first-

logarithm-transformed 

reflectance (RMSE = 0.85% and r = 0.82). 

TSC, TAC, SSC and water content of yellow peach 

were predicted at each sampling point using the 

multiple line regression equations determined above 

(Table 3). The relationships between actual TSC, TAC,

 

 

infrared prediction results of 60 samples from the MLR models using the first-order derivative of 
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SSC and water content and the predicted values were 

examined in terms of R
2
 values, which are 0.61 

(p<0.001), 0.55 (p<0.005), 0.72 (p<0.001) and 0.68 

(p<0.001), respectively and the corresponding RMSEs 

of 2.32, 0.08, 0.44 and 0.85%, respectively (Fig. 7). In 

general, the dlog (1/R) performs better than log (1/R) 

for predicting TSC, TAC, SSC and water content of 

yellow peach. 

 

CONCLUSION 
 

The correlation analysis with the two indices of 

transformed spectral data (log (1/R) and dlog (1/R)) 

showed no significant relationship between TSC, TAC, 

SSC and water content and the reciprocal-logarithm-

transformed reflectance (log (1/R)). However, the first-

order derivative of reciprocal-logarithm-transformed 

reflectance (dlog (1/R)) showed stronger correlation for 

some wavelengths. These wavelengths with stronger 

correlation were selected for the sensitive wavelengths 

and were set as the inputs of multiple line regression 

analysis. TSC, TAC, SSC and water content of yellow 

peach were predicted at each sampling point using the 

multiple line models. The main conclusions of the 

research are as following: 

Overall, the determination of TSC, SSC and water 

content in yellow peach fruits by ASD near-infrared 

spectral analysis (350-2500 nm) was successful. 

Although the TAC determination still needs to be 

improved.  

Moreover, quality parameters of samples covered a 

large variety of different yellow peach (TSC: 3.828-

26.37%, TAC: 0.383-0.961%, SSC: 9.1-12.9° Brix (%) 

and water content: 81.211-90.752%) in the study, 

showing that visible and near-infrared spectroscopy has 

the ability to rapidly and non-destructively determine 

the internal quality of yellow peach. 
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