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Abstract: In this study, we analyze diagrams of heat distribution around the baking pan’s outer edges. By using 
Fourier's law, the model of heat distribution is developed. Models of instantaneous heat flux density on the pan are 
constructed for pans of different shapes-from rectangular to circular and other shapes in between. Then, we utilize 
two arcs to substitute the two parallel lines of the rectangle, creating a track-shaped pan and discovered that in this 
design, there is good performance in the baking process and heat is distributed evenly over the entire outer edge of 
the pan. Finally, simulation results are presented to show the effectiveness of the proposed method. 
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INTRODUCTION 

 
As one kind of the oldest and most popular food 

processing techniques, baking oven has been under 
investigation by many researchers to improve the 
energy efficiency of the process and the food product 
quality (Savoye et al., 1992; Sablani et al., 1998; Lostie 
et al., 2002; Sakin et al., 2007a, b, 2009). In a baking 
oven, the hot air flows over the baking oven by natural 
convection, the radiation from the oven heating 
surfaces, the convection from the air and the conduction 
heat transfer across contact area between product and 
the oven surface. The moisture in the food 
simultaneously diffuses toward the each surface, then, it 
transfers from the surface and the product loses 
moisture with continuous movement of the oven air. 
These are the simultaneous momentum, heat and 
moisture transfer mechanisms within a baking product 
(Tong and Lund, 1990; Ozilgen and Heil, 1994) and 
between the product and its environment (Broyart and 
Trystram, 2002), which, theoretically, have been well 
known. 

The study of the baking oven requires the 
following analyses: heat utilization and heat transfer. 
During a standard cooking procedure, a large 
proportion of the energy supply to the oven is absorbed 
by the structure and lost in the around environment 
(Ploteau et al., 2012). In the context of energy 
efficiency, we should reduce consumption by adjusting 
the thermal capacity of the oven and the air temperature 
levels and optimize radiation whilst maintaining the 
quality of the product. 

When baking in a rectangular pan heat is 
concentrated in the four corners and the product gets 
overcooked at the corners (and to a lesser extent at the 
edges). In a round pan the heat is distributed evenly 
over the entire outer edge and the product is not 
overcooked at the edges. However, since most ovens 
are rectangular in shape using round pans is not 
efficient with respect to using the space in an oven. To 
the best of the author’s knowledge, there are little 
works concerning shape design problem of the pan in a 
baking oven. In this study, we will develop a model to 
show the distribution of heat across the outer edge of a 
pan for pans of different shapes - rectangular to circular 
and other shapes in between. 

 
MODEL OF HEAT DISTRIBUTION IN THE 

BAKING OVEN 
 

Heat distribution model: In this section, we will 
develop a model to show the distribution of heat across 
the outer edge of a pan for pans of different shapes and 
thus providing an explanation to why a rectangular pan 
tends to be overcooked at the corners and edges while 
in a round pan heat is evenly distributed over the entire 
outer edge and the product is not overcooked at all. The 
shape of the oven can be seen in Fig. 1. 

Through reasonably assuming that the problem is 
under an ideal condition that the oven is homothermal, 
the matter of heat exchange between the oven and the 
pan can be simplified. We know that in order to bake 
brownies the oven must be preheated to a certain 
temperature and therefore, we suppose that, once the 
pan   is  inside  the  oven,  the boundary  conditions  for  
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Fig. 1: The shape of baking oven 
 
every surface except the top surface of the pan are 
exactly   the  same  after  some  time  T0  (meaning  that 
boundary temperatures have all reached the preheated 
temperature except the top surface). 
 
Heat transfer model: The problem can then be 
interpreted as a problem of heat exchange among 
objects with equal initial temperatures under the first 
boundary condition. According to Fourier's Law in 
reference (Broyart and Trystram, 2002), a mathematical 
model for this problem can be described as follows: 
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where,  
α =  The thermal diffusivity 
λ  =  Heat transfer coefficient 
ρ, Cp =  The density and the specific heat capacity 
t  =  The temperature 
 

The above three-dimensional heat conduction 
model is based on the conduction of elementary area in 
space. But in this study, we assume every surface 
except the top surface can be heated uniformly. Then 
the conduction of each surface can be treated as one-
dimensional heat conduction model. The model can be 
simplified as: 
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Let us define 
0( , ) ( , )T x t x tτ τ= − , then (2) can be 

rewritten as: 
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By using the Laplace transformation (Broyart and 

Trystram, 2002) with respect to timeτ , we have: 
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And Eq. (4) can be solved as: 
 

1 2( , )
p px x
a aT x p C e C e= +                 (5) 

 
From Eq. (4) we know that 2 0C =  and

1 0( )C f p= . 
Substituting 

2 0C =  into Eq. (5), we can obtain: 
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Since 

1 0 ( )C f p=  , we have: 
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From above discussion, we can get the heat transfer 

model as: 
 

2

'
'

4 ( ) '0
' 3/20

( )( , ) e
( )4

x
x fT x d

a
τ α τ τττ τ
τ τπ

⎡ ⎤
−⎢ ⎥

−⎢ ⎥⎣ ⎦=
−∫             (8) 

 
where, 0 0( ) s sf T t tτ = = − , with st  is boundary 
temperature. 
 
Model of Instantaneous heat flux density: According 
to Fourier's law, we can know that the instantaneous 
heat flux density pass through the tangent plane with 
the distant  d apart for the surface: 
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Fig. 2: Heat conduction on the pan in rectangular shape 
 

 
 
Fig. 3: Heat conduction on the pan in circle shape 
 

 
 
Fig. 4: Heat conduction on the pan in shape between circle 

and rectangle 
 

Then we will further discuss the distribution of 
heat on the brownie pan by the three example, namely 
rectangular, circle and rectangular to circular and other 
shapes in between. 

The instantaneous heat distribution on a 
rectangular pan can be seen in Fig. 2. 

From Eq. (9) and Fig. 1, we can obtain the 
following equation: 
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The instantaneous heat distribution on a circle pan 

is shown in Fig. 3. 
Similarly available, we have the following equation: 
 

2 2

2

4 4

(2 )
4

s x y z

c m
s s

r m
s

q q q q

T Te e

T e

ατ ατ

ατ

λ λ
πατ πατ

λ
πατ

− −

−
−

= + +

= +

+

             (11) 

 
There are many probable shapes between 

rectangular and circular shape. In this study, we 
construct the following shape as described in Fig. 4. We 
use two arcs to take the place of two parallel lines in the 
rectangle. From above discussions, we can obtain the 
following equation: 
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SIMULATION STUDIES 

 
When a pan full of products with room temperature 

is put in the oven, in fact the pan's surface can no be 
heated to the temperature of the oven immediately. In 
this study we can think that after a small constant T0 , 
the surface except the top surface will be heated to the 
environmental temperature inside the oven. In the 
simulation studies, we begin compute at time 0T  and 
the other parts of the pan are assumed to have the room 
temperature. The environmental temperature and 
temperature in the oven are assumed to be 20° and 
190°,  respectively. 

Firstly we study the case that the pan has a 
rectangular shape. As the statement in Savoye et al. 
(1992),  Sablani  et  al. (1998) and Sakin  et  al. (2009),  
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Table 1: Parameter values in the computation of the model 
Variable Value Unit 
A 0.02 m2

a 0.1 m
b 0.05 m
c 0.006 m
α 1.47×10-5 m2/s
λ 54 w/(m[] °C)
 

 
 
Fig. 5: Instantaneous heat flux density of rectangular pan at 

different time 
 

 
 
Fig. 6: Instantaneous heat flux density of circular pan at 

different time 

 
 
Fig. 7: Instantaneous heat flux density of the pan in different 

shape 
 
in this study, the parameters used in the simulation are 
chosen as Table 1. 

The simulation results are shown in Fig. 5. The q 
axis represents the instantaneous heat flux density.  

From the results we can see that the heat in the 
corners of the rectangular brownie pan rise quickly and 
to a lesser extent at other places.  

Secondly, with respect to the circular brownie 
pans, the computation results are presented in Fig. 6. 
Then we can easily get the radius / 0.0798r A mπ= =  . 
From the Fig we can see that when the products are 
baked on the circular pan, the heat is distributed evenly 
over the entire outer edge. And 100 seconds later, the 
whole pan approximately achieves the same 
instantaneous heat flux density.  

Then, we utilize the pan in shape between circular 
and triangle to test the model. To simplify the 
computation, we let the arcs be semi-circles. The length 
and width of the rectangle are chosen as 0.015 m, 
0.01m, respectively. Then we can conclude that the 
radius of the semi-circles is 0.005 /π . The 
computation results are shown in Fig. 7. Since the pan 
is symmetrical, we only draw the part of y≥0. Form the 
results we can see that the shape of the brownie pan we 
constructed between circle and rectangle have good 
performance in the baking. And the heat is distributed 
evenly over the entire outer edge of the pan. 

 
CONCLUSION 

 
Normally, we use rectangular pans in which heat is 

concentrated in the four corners and distributed 
unevenly around the outer edges and thus the brownie 
gets overcooked at the corners and loses the desired 
taste. However, with a round pan this can be avoided, 
though then the number of pans fit in the oven won’t be 
maximized. With these problems in mind and through 
computer simulation, we analyzed diagrams of heat 
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distribution around the pan’s outer edges for shapes 
from rectangular to circular and ones in between, to 
find a solution to bake a maximum quantity of perfect 
homemade brownies in the shortest amount of time. It 
is clear to see that the circular pan possesses a 
wonderfully even distribution of heat around the outer 
edge and this is confirmed through the fact that we have 
ran simulations to prove that the rapidity of temperature 
rise is directly related to the sharpness of the corners on 
the pan, which determines whether the brownie is 
overcooked or not. In order to avoid overcooking the 
brownie, we changed the pointy corners on the 
rectangular pan to the circular edges on a round pan, 
creating what we call the “track-shaped” design. This 
design comprises the advantages of both rectangular 
and round pans, meaning that not only does it distribute 
heat evenly around the outer edge, but it can also 
maximize the number of pans inside the oven. 
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