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Abstract: A nonlinear mixed-effects modeling approach was used to model individual tree diameter increment 
based on Logistic growth function for dahurian larch (Larix gmelinii Rupr.) plantations in northeastern China. The 
study involved the estimation of fixed and random parameters, as well as procedures for determining random effects 
variance-covariance matrices. Results showed that the mixed-effects model provided better model fitting than the 
fixed-effects model. The logistic model with three random parameters b1, b2, b3 was considered the best mixed 
model. Time series correlation structures included Autoregressive correlation structure AR (1) and AR (2), Moving 
Average correlation structure MA (1) and MA (2) and Autoregressive-Moving Average correlation structure 
[ARMA (1, 1)] and ARMA (2, 2) were incorporated into the best mixed model. The mixed model with MA (2) 
correlation  structure  showed  lower  AIC  and  BIC  values  and  significantly  improved  model  performance 
(LRT = 545.6, p<0.0001). Techniques for calibrating the diameter growth model for a particular tree of interest were 
also explored. The results indicated that the mixed-effects model provided better diameter predictions than the 
models using only fixed-effects parameters. 
 
Keywords: Diameter growth, logistic function, model calibration, nonlinear mixed-effects modeling 

 
INTRODUCTION 

 
Statistical models in which both fixed and random 

effects enter nonlinearly are becoming increasingly 
popular (Wolfinger, 1999). These models have a wide 
variety of applications in many areas such as 
agriculture, forestry, biology, ecology, biomedicine, 
sociology, economics, pharmacokinetics and other 
areas (Pinheiro and Bates, 1998). Mixed effect models 
are flexible models to analyze grouped data including 
longitudinal data, repeated measures data and 
multivariate multilevel data (Lindstrom andBates, 
1990). One of the most common applications is 
nonlinear growth data (Palmer et al., 1991).  

A number of growth functions have been used for 
modeling tree growth variables (Huang and Titus, 1995; 
Colbert et al., 2002). Ordinary Linear Square (OLS) 
and Ordinary Non-Linear least Squares (ONLS) 
regression techniques have been used to fit these 
functions. However, tree diameter increment data are 
generally taken from trees growing in plots located in 
different stands. This hierarchical structure results in a 
lack of independence between observations, which 
results in biased estimates for the confidence interval of 
the parameters if ordinary least squares regression 
techniques are used. To deal with this problem, mixed 
model approaches have been used in tree growth 
modeling (Fang and Bailey, 2001; Jiang and Li, 2008, 

2010; Gregoire and Schabenberger, 1996). Mixed 
effects models estimate both fixed and random 
parameters simultaneously for the same model, 
providing consistent estimates of the fixed parameters 
and their standard errors. Furthermore, the inclusion of 
random parameters captures more variation among and 
within individuals. Mixed models may also improve the 
predictions through calibration of growth models for a 
specific location and growth period. Prediction of the 
random parameters using best Unbiased Predictors 
(BLUP) can be carried out if supplementary 
observations of the dependent variable are available. 
The objectives of this study were to: 
 

• Develop diameter increment models for dahurian 
larch in northeastern China based on nonlinear 
mixed-effects modeling approach 

• Determine and account for variance-covariance 
structure within individual 

• Evaluate the predictability of the mixed-effects 
model based on the calibration 

 
MATERIALS AND METHODS 

 
Data used in this study were obtained from 10 

stands of dahurian larch plantations located in Wuying 
forest bureau in Heilongjiang Province, northeastern 
China (129°06′-129°30′E, 47°54′-48°19′N). The annual 
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average temperature is 0.2°C. The frost-free period is 
around 106 days with annual precipitation about 620 
mm. First, a plot of 0.04 ha was established for each 
stand. In each plot, diameter at breast height (DBH, 1.3 
m) was measured with a diameter tape and recorded for 
every living tree to the nearest 0.1 cm. Total tree height 
was measured with a Hagloff Laser Vertex Hypsometer 
and recorded to the nearest 0.1 m. Then, three sample 
trees were selected from each plot. Stem analysis data 
were collected by felling the trees, sectioning them and 
counting the ring on each section. A disk was extracted 
at 1.3 m to measure diameter increment. A total of 30 
trees are available for stem analysis in this study with 
age ranging from 38 to 53 years old. Ranges of these 
tree characteristics were 6.0-32.2 cm for diameter at 
breast height and 6.7-26.2 m for total height. Mean 
values of diameter and total height for these trees were 
20.1 cm and 21.2 m with their standard deviations 5.9 
cm and 4.2 m, respectively. The 30 sample trees yielded 
636 diameter-age pairs. 

After initial screening of some growth models, 

such as Chapman-Richards, Logistic, Weibull and 

Compertz, the Logistic model was selected for the 

mixed effects analysis due to its best overall fit. The 

form of the mixed Logistic model is: 
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where  

yij : The diameter at time j for the i
th

 tree (cm)  

tij : The age at time j for the i
th

 tree (years)  

w1, w2 & w3 : Parameters  

εij : Random error 

 

The parameter wi varies from tree to tree to account for 

between tree variations. The parameter wi 
can be 

expressed as: 

 

iiii
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where, 

β = The fixed effects parameter 

bi = The random effects associated with the i
th

 tree 

D = The variance-covariance matrix for the 

random effects  

Ai & Bi = Design matrices for the fixed and random 

effects, respectively  

 

Model construction: According to Pinheiro and Bates 

(2000), model construction techniques for mixed-

effects model involve the following steps: 

 

• Specification of the parametersof the model either 

to be considered mixed (both random and fixed) or 

purely fixed.  

• Determination of the structure of the among-tree 

variance-covariance matrix (D). 

• Determination of the within-tree variance-

covariance structure (Ri) to account for 

heteroscedasticity and residual correlation. 

 

For the construction of a mixed model, the first 
question that should be addressed is determining which 
effects should be considered mixed and which should 
be considered purely fixed. An intuitive approach is to 
fit diameter-age models to each individual tree and 
assess the variability of estimated parameters by 
considering the individual confidence intervals 
(Pinheiro and Bates, 1998). The parameters with high 
variability and less overlap in confidence intervals 
across trees should be considered as mixed effects. A 
more general approach is to fit different prospective 
models and compare nested models using likelihood 
ratio tests or information criterion statistics, such as the 
Akaike Information Criterion (AIC). To avoid over-
parameterization problems and ill-conditioning 
problems of variance-covariance matrix, both methods 
were used in this study to determine the parameter 
effects. 

The variance-covariance matrix for the random-
effects (D), common to all trees, defines the existing 
variability among trees. First, we assume that the 
random effects are independent of each other which 
make a diagonal random effects variance-covariance 
matrix to reduce the number of parameters in the 
model, then different random effects variance-
covariance structures (e.g., diagonal and general 
positive-definite matrices) are explored to determine 
whether a correlated variance-covariance structure is 
needed for random effects. 

To specify the within-tree variance-covariance 
structure (Ri), the autocorrelation structure must be 
addressed. Since our sample data is repeated-
measurements data from the same tree, the expression 
for the within-tree variance-covariance matrix has the 
following form: 
 

inii
IR Γ= 2σ                              (2) 

 
where, 
Ini = An identity matrix (ni× ni) 

Γi = Correlation structures 
σ

2 
= Residual variance of the model 

 
Model evaluation: To evaluate model performance, 
Bias, Root Mean Square Error (RMSE) and coefficient 
of determination (R

2
) were employed. These evaluation 

statistics are defined as:  
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Fig. 1: Ninety-five percent confidence intervals on the parameters in the logistic model based on individual fits 
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where, 
yi = Observed value for the i

th
 observation 

��� = Predicted value for the i
th

 observation  

i
y  = The mean of the ��  

 
The model with the smallest values of Bias, RMSE and 
higher R

2
 was considered the best. Nonlinear mixed-

effects models were fitted with the NLME procedure in 
S-Plus 2000 (Math soft, Seattle, WA). 

The main purpose of final model involves diameter 
prediction for unmeasured trees. An important 
characteristic, compared to traditional regression, is that 
mixed-effects models allow for both mean response and 
calibrated prediction.  

If no tree diameter has been measured, the 
parameters of random effects are not predicted. Thus, 
the expected value 0 is used for all random parameters. 
The mean diameter prediction is obtained using the 
fixed parameters estimates. 

A calibrated response requires prior measured 
diameter information. If both diameter and age have 
been measured for a subsample of k trees, the vector of 
random effects bk can be estimated using this additional 
information. Calculation is carried out using an 
approximate Bayes estimator of bk (Vonesh and 
Chinchilli, 1997): 
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where, 

�� = A q×q variance-covariance matrix (q is Number 

of random-effects parameters included in the 

model) for the among tree variability  

��� = The k×k variance-covariance matrix for within-

tree variability  

	
� = The design matrix for the random components 

specific to the additional observations 

��� = The difference between the observed diameter 

and the predicted diameter using the fixed effects 

parameters 

 

RESULTS 

 
Individual fits approach was first used to determine 

parameter effect either as mixed or purely fixed. 
Confidence intervals were obtained on the parameters 
in logistic model showed in Eq. (1) based on individual 
fits using nlsList function in S-Plus. Figure 1 gives the 
approximate 95% confidence intervals for three 
parameters of b1, b2 and b3 in Eq. (1) for each tree. It 
was noticed that confidence intervals of three 
parameters of b1, b2 and b3 showed more among-tree 
variability. Therefore, parameters b1, b2 and b3 were 
considered random effects.  

To avoid over-parameterization problems and ill-

conditioning problems of variance-covariance matrix, 

the different combinations of fixed and random 

parameters were also explored (Table 1). The results 

showed that the best performances were obtained for 

logistic model with parameters b1 as mixed effects 

when considering one random parameter and with 

parameters b1 and b3 as mixed effects when 
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Table 1: Likelihood ratio tests with different fixed and random effects components 

Model Random parameters No of parameters AIC BIC Log-likelihood LRT p-value 

1.0 None 4 3182.5210 3200.3420 -1587.2600   

1.1 b1 5 1952.8910 1975.1670 -971.4450 1231.6300 <0.0001 
1.2 b2 5 2506.7180 2528.9940 -1248.3590   

1.3 b3 5 2265.0770 2287.3530 -1127.5380   

1.4 b1, b2 7 1853.7650 1884.9510 -919.8820   
1.5 b1, b3 7 1806.9610 1838.1480 -896.4810 149.9295 <0.0001 

1.6 b2, b3 7 2229.1800 2260.3660 -1107.5900   

1.7 b1, b2, b3 8 1756.1300 1800.6820 -868.0649 56.8317 <0.0001 

 

 
 

Fig. 2: Scatter plot of residuals for the fixed-effects model (left) and mixed-effects model (right)  

 

considering two random parameters. Likelihood ratio 

test indicated that the addition of the random parameter 

b1 significantly improved model fitting on model 1 

(LRT = 1231.6, p<0.0001). The addition of the random 

parameters  b1, b3 significantly improved model fitting 

on model 1.1 (LRT = 149.9, p<0.0001). The addition of 

the random parameters b1, b2, b3 significantly improved 

model fitting on model 1.5 (LRT = 56.8, p<0.0001). 

Therefore, The two methods gave the same results that 

the three random parameters b1, b2, b3 were needed in 

mixed-effects logistic model. 
To get the among-tree variance-covariance 

structure, the logistic model with three random 
parameters was fitted to the sample data using NLME 
function in S-Plus. Taking b1, b2, b3 as mixed effects, 
both Diagonal (Diag) and general positive-definite 
Symmetric (Sym) variance-covariance structures were 
examined for the random effects (D). It indicated that 
the two structures for the mixed logistic model were of 
significant difference (LRT = 16.1, p = 0.0011). The 
mixed logistic model with symmetric variance-
covariance structure resulted in lower values of AIC 
(1756.13) and BIC (1800.68), indicating that a 
correlated variance-covariance structurewas preferred 
in the model fitting. 

Sample data are tree growth data in which serially 

correlated errors usually arise in the fitting of growth 

curves to the sample data. Correlation structures can be 

incorporated into mixed-effects models (Chi and 

Reinsel, 1989). Therefore the AR (1), AR (2), MA (1), 

MA (2), ARMA (1, 1) and ARMA (2, 2) correlation 

structures were tested for inclusion in the mixed-effects 

logistic model. The mixed logistic model with MA (2) 

correlation structure showed lower values of AIC and 

BIC with significant improvement of the model 

performance (LRT = 545.6, p<0.0001). The MA (2) 

could explain more dependency among repeated 

measurements within the individual. The correlation 

structure for MA (2) is: 
 

( )























+

++

+

=Γ

1
1

0

1
1

1

0
1

1

2

22

2

θ
θ

θ
θ

θ
θ

θ
θ

θi

                         (4) 

 
Scatter plots of residuals were constructed for 

mixed-effects and fixed-effects models (Fig. 2). The 
Scatter plots showed that the mixed-effects model 
showed more homogeneous residual variance and no 
systematic pattern in the variation of the residuals. It 
indicated that mixed-effects model reduced the variance 
and significantly improved the model performances 
compared to fixed-effects model. 

Based on the above considerations, the resulting 

mixed diameter growth model was: 
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Parameter estimates and fit statistics for basic and 

mixed models are presented in Table 2. Compared to 
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Table 2: Estimated parameters and fit statistics for the basic model and mixed-effects model 

 Parameter Basic model Mixed-effects model 

Fixed parameters β1 20.5736 (0.8050) 16.7122 (0.9794) 

 β2 6.8052 (0.4778) 8.1273 (0.3872) 
 β3 0.0915 (0.0060) 0.2579 (0.0059) 

Variance components σ2 8.6558 0.4430 

 σ2
b1  28.1501 

 σ2
b2  2.2529 

 σ2
b3  0.0008 

 σb1b2  -2.9624 
 σb1b3  -0.1016 

 σb2b3  0.0216 

 θ  0.9976 
Goodness-of-fit Bias -0.0678 -0.0564 

 RMSE 2.9351 0.7130 

 R2 0.7526 0.9854 

 

 
 

Fig. 3: Predicted versus actual diameters (circle) with (solid lines) and without (dotted lines) random parameters 

 

the basic model, the mixed-effects model showed better 

performances with lower bias, RMSE and higher R
2
. 

The performance of the mixed model was also 

visualized by displaying the predicted and observed 

values in the same tree (Fig. 3). Both the fixed-effects 

model with random effects set to zero and mixed-

effects model are compared. Prediction values of the 

mixed-effects model more closely followed the actual 

values for most trees and indicated that mixed model 

described the diameter growth of larch tree well. 

Tree diameter predictions for new observations can 

be obtained either by using fixed parameters alone or 

by adding random parameters calculated from prior 

observations.  

 

Case 1: Prediction with no prior diameter 

observations: If no prior information is available for a 

tree, the vectors of random effects are assumed to be 

equal to their expected value, which are zero by 

definition. The values of the fixed-effects parameters 

are from Table 2. Tree diameter is then calculated using 

Eq. (5). For example, the estimated diameter at age 24 

is �� = 11.7 cm, the bias is 4.5 cm and the variance is var 

(��) = 20.2. A 95% confidence interval for the prediction 

is (2.9, 20.9).  

 

Case 2: Prediction with prior diameter observations: 
Suppose we know the tree diameters at age 2, 4, 6, 8, 10 
and 12 to be 1.0, 2.7, 4.4, 6.7, 8.4 and 10.1 cm for a 
tree. Assume we want to predict the diameter of this 
tree at age 24.  

The vector of random effects parameters �� is 

calculated by using Eq. (3): 

 

















=

0.011649  

0.339652 

3.227434-

ˆ
k

b  

 

Finally, tree diameterwas calculated using Eq. (5). 

The estimated diameter at age 24 is �� = 13.3 cm, the 

bias is 2.9 and the variance is var (��) = 8.4. A 95% 

confidence interval for the prediction is (7.6, 19.0). 

Compared with Case 1, Case 2 gives a 
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narrowerconfidence interval of tree diameterprediction 

at age 24. Therefore, the predictive ability of the mixed 

model with calibration is better than that of the fixed-

effect model.  

 

CONCLUSION 
 

In this study, a nonlinear mixed-effects 

diameterincrement model was developed for dahurian 

larch in northeastern China. Nonlinear mixed-effects 

modeling techniques were used to estimate fixed and 

random-effect parameters for logistic growth function. 

The results showed thatthe logistic model with 

threerandom parameters was found to be the best in 

terms of goodness-of-fit criteria. The mixed-effects 

model provided better model fitting and more precise 

estimations than the fixed-effects model. Time series 

correlation structures including Autoregressive 

Correlation structure AR (1) and AR (2), Moving 

Average correlation structure MA (1) and MA (2), 

Autoregressive-Moving Average correlation structure 

[ARMA (1, 1)] and ARMA (2, 2) were incorporated 

into the best mixed model. The mixed model with MA 

(2) correlation structure significantly improved model 

performance (LRT = 545.6, p<0.0001). The fixed-

effects parameters alone can be used to obtain the mean 

diameter growth curve for dahurian larch plantation 

based on all trees sampled from the population of 

plantation in the region. The random parameters for a 

tree of interest could be predicted with an approximate 

Bayes estimator of bk using the prior diameter 

measurements from sample trees together with 

estimates of the fixed-effects parameters, the residual 

variance and the estimated variance-covariance matrix 

for the random-effects parameters. After calibration of 

random parameters, mixed model could improve 

diameter prediction compared to fixed model using 

fixed parameters. 

The models developed in this study can be 

implemented in forest inventories with measurement of 

several tree diameters. The process of calibration 

apparently accounted indirectly for effects of site 

quality and stand density on the diameter growth. The 

estimate of random-effects parameters makes the 

inclusion of additional predictor variables in the model 

unnecessary for many forest inventory applications that 

consider measurement of sub-sample trees. 
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