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Abstract: The study proposes a new simple output feedback adaptive tracking control scheme using neural network 
for a class of complicated modern agricultural mechanical systems that only the system output variables can be 
measured. The scheme avoids design state observer and Lipschiz assumption, SPR conditions are not required and 
few parameters in control laws and weights update laws need to be tuned. Only one RBF neural network is 
employed to approximate the lumped uncertain nonlinear function. The stability analysis of the closed-loop system 
is performing using a Lyapunov approach which shows that the output tracking error and all states in the closed-loop 
system are boundedness. The effectiveness of the proposed adaptive control scheme is demonstrated through the 
simulations. 
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INTRODUCTION 

 
It is harder to establish the mathematical model for 

modern agricultural mechanical systems which are to 
be controlled become more and more complicated. In 
recent years, fuzzy logic control (Imaduddin et al., 
2011; Sarkar et al., 2012) and adaptive neural network 
that model the functional mechanism of the human 
brain that can cooperate with human expert knowledge 
have been successfully applied to many control 
problems because they need no accurate mathematical 
models of the system under control. Likewise, for a 
class of nonlinear continuous-time systems, adaptive 
direct and indirect control using fuzzy logic have been 
proposed by Liu and Wan (2002a) by using “dominate 
inputs” concept. Controllers proposed by Liu and Wan 
(2002b) using a state feedback approach is valid if all of 
the system states are available for measurement. In 
practice, however, the state feedback control does not 
always hold because system states are not always 
available. Based on controllers proposed by Liu and 
Wan (2002a, b) and Tong and Qu (2005) present 
adaptive output control algorithms based on state 
observer and error observer. Most of them deal with the 
control problem of the affine nonlinear systems. 
However, in practice, the control methods of affine 
nonlinear systems do not always hold and the control 

methods of the non-affine nonlinear systems are 
necessary and in fact many mechanical systems are 
non-affine nonlinear systems. And few results are 
available for non-affine nonlinear systems in which the 
control input appears in a nonlinear fashion. 
Boukezzoula et al. (2003) addressed the indirect 
adaptive fuzzy control problem of SISO non-affine 
nonlinear systems. The approach is based on the 
approximation of the nonlinear plant dynamics by a 
fuzzy system and then the control action is computed 
based  on  local  inversion  of  the fuzzy model. Wang 
et al. (2000) proposed an indirect adaptive fuzzy 
controller, within this approach, the SISO non-affine 
nonlinear system is firstly transformed into an affine 
form by considering a Taylor series expansion around 
an operating trajectory. However, the indirect adaptive 
approach has the drawback of the controller singularity 
problem, i.e., division by zero may occur in the control 
law. An observer-based direct adaptive fuzzy-neural 
control scheme is presented for non-affine nonlinear 
systems (Leu et al., 2005). By using implicit function 
theorem and Taylor series expansion and SPR 
Lyapunov theory, the stability of the close-loop system 
is verified. Recently, an output feedback-based adaptive 
neural controller has been presented for a class of 
uncertain non-affine nonlinear systems with 
unmodelled  dynamics  which reduce  the complexity of  
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control design (Du et al., 2010). But in the scheme, a 

low-pass filter is designed to make the estimation error 

dynamics satisfy the Strictly Positive-Real (SPR) 

condition so that they can use Meyer-Kalmon-

Yakubovitz (MKY) lemma, which makes the stability 

analysis of the closed-loop system and real 

implementation very complicated. And the parameters 

of filter are hard to be chosen. Output feedback tracking 

control scheme is investigated for a class of uncertain 

nonlinear systems (Hu and Guo, 2012). But the 

observer must be employed. In order to simplify the 

design of controller, an output feedback-based adaptive 

neural controller has been proposed for a class of 

uncertain nonlinear systems (Hu et al., 2012). No state 

observer was employed in the algorithm and only the 

output error was used in control laws and weights 

update laws. 

Based on the above observation, a novel systematic 

design procedure is developed for non-affine nonlinear 

systems which only the output variables can be 

measured without state observer to simplify the design 

of control system. First, a low-pass filter is employed to 

transform the normal form non-affine nonlinear system 

into affine in the pseudo-input dynamics. No state 

observer is employed and the neural weights update 

laws is tuned according to only the output tracking 

error. The stability analysis depends heavily on the 

universal function approximation property, only one 

RBFN is employed to approximate the lumped 

uncertain nonlinear function. There are no restrictive 

conditions on the design constants. The proposed 

scheme has few adapting parameters to be tuned and 

Lipschiz assumption, SPR condition are not required.  

 

PROBLEM FORMULATION 

 

The following notations and definitions will be 

used extensively throughout this study. Let R be the real 

number and R
n
 represent the real n-vectors. |k| denotes 

the usual Euclidean norm of a vector k. In case where k 
is a scalar, |k| denotes its absolute value. 

We consider the following non-affine nonlinear system: 
 

1

1
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( , )                   

                         

i i

n

x x i n

x f x u

y x

+= = −


=
 =

& L
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                                     (1) 

 

where, y R∈ , u R∈  are the output and input of the 

system and 
1[ , , ]T n

nx x x R= ∈L  is the system state 

vector. The smooth function f()
 
is unknown. The states 

are not measurable, only y is available for control 

design. 

In this study, we will make the following 

assumptions regarding the system (1) and the desired 

trajectory yd (t). 

Assumption 1: The value of 
��
�� is nonzero. Without 

loss of generality, we assume that for all nx R∈ , 
��
�� ≥ �� > 0. 

 
Assumption 2: The desired trajectory yd and its time 
derivative y

i
d (t), i = 1, …, n are smooth and bounded. 

The control objective is to design an adaptive 
neural network controller for a class of non-affine 
nonlinear systems (1) such that the system output y

 
follows a desired trajectory yd, while all signals in the 
closed-loop system are bounded.  

In the followings, we will adopt low-pass filter to 
transform (1) into affine in the pseudo-input dynamics 
(Park et al., 1995). The overall scheme is illustrated in 
Fig. 1. 
The transfer function of the low-pass filter is: 
  

( )L s
s

κ
κ

=
+

                                                         (2) 

 
where, κ is a positive design constant. Then, although 
the pseudo-control up 

shows a chattering phenomenon 
due to a switching function, the actual control input u 
applied to the real plant is smooth because u is made by 
low pass filtering of up: 
 

pu u uκ κ= − +&                                                       (3) 

 
We define the augmented state variable as 

[ ] ( 1) ( )
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The functions ( )a η and ( )b η  are be defined as: 

 

1

1

( )
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where, ( )b η
 

is nonzero and positive according to 

Assumption 1. For all mRη ∈  there exist positive 

constant b0 such that 
0( )b bη ≥ . By this way the original 

n
th

-order non-affine nonlinear system becomes 
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Fig. 1: Basic idea for smoothing control  

 

the m
th

-order affine in the pseudo-input nonlinear 

system: 

 

1   1, 2, ,

( ) ( )
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ADAPTIVE NEURAL NETWORK 

CONTROLLER DESIGN 

 

Define the reference vector ( )[ ]n T m

d d d dy y y y R= ∈& L . 

The tracking error is defined as 
d

e y y= −  and the 

tracking error vector as ( )[ , , ]n T m

de y e e e Rς= − = ∈& L . 

We define a filtered tracking error as: 

 
1

1

m

Td
s e e e

dt
λ τ

−
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               (7) 

 

where, 1 2, ( 1) , , ( 1)
T

m mm mτ λ λ λ− − = − − L , 1Tτ Λ =   
and λ>0 is a design constant. The time derivative of s is 

derived as: 

  
( ) ( )

1

( )

1 1

1 1

 ( ) ( )

 ( ) ( )

T m m

d

T T m

d d p

T

p

s e y y

y y a b u

a b u v

ς η η

η ς η

= Λ + −

= Λ − Λ + − −

= − − Λ − +

&

                 (8) 

 

where, 
1

0
T

Tτ Λ =    , ( )

1 1

m T

d dv y y= + Λ . For the system 

(1) if the control input is determined as: 
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where, k (t) >
�
	 is a design parameter, 

1 2( ) ( ) ( )T Ta a b kη η ς η τ ς= − − Λ − , ( ) ( )1 2 1 2, ,v v v v b vη η= +  

2 2

T

dv k yτ= , 2

2
0, ( 1) , ( 1) ,1

T
mm mτ λ λ− = − − L , Then, s 

converges to zero. 

 

Proof: Let us choose the following Lyapunov-like 

function Vs = 
�
	 s

2
. Differentiating Vs with respect to 

time and using (8), we obtain:  
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Equation (10) implies that lim 0
t

s
→∞

= . 

We rewrite the ideal controller (9) as: 

  
* 1 *

( )
m

a du k t e uλ −= +                                   (11)  

  

where, 
��
∗ =  � �����

� (�)
 

is an unknown function because 

�  ��� � (�) are unknown in ideal controller (9) and the 

state vector ς
 

cannot be measured. So the ideal 

controller is not available. 
In this study, a Radial Basis Function (RBF) 

Neural Network (NN) is used to capture the unknown 

nonlinearity  
��
∗   in  (11).  In  general,  the  output  of 

the multiple-input-single-output  RBFNN  is  described  

by: 

  

( ) ( )
T

h Wξ φ ξ=                                           (12) 

 

where, ( )h Rξ ∈ is the RBFN output, LW R∈  is the 

adjustable parameter vector, 
1

( ) :
n L

R Rφ + →�  is a 

nonlinear vector function of the inputs with L being the 

number of RBFs. The i
th

 element of W, , 1, ,i i Lω = L , 

is the synaptic weight between the i
th

 neuron in the 

hidden layer and output neuron and ( )iφ ξ  is a Gaussian 

function in the form of: 

  

2
( ) exp

2

i

i

i

ξ ν
φ ξ

δ

 − 
= − 

 
                                      (13) 

 

where, vi is a m-dimensional vector representing the 

center of the i
th

 basis function and δi 
is the variance 

representing the spread of the basis function. 

The key advantage of RBFN is that it has the 

capability to approximate nonlinear mappings to any 

degree of accuracy. So: 
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where, approximation error ε  satisfy 
0ε ε≤ , 

[ ]1 1 1 2( ), ( ), , ( ( 1) ), ( ), ( )
T

y t y t d y t m d v t v tξ = − − −L
 
is the 

input vector to the RBFNN and d1>0
 
is a positive time 

delay. W* is an ideal parameter vector which 

minimizes the function ε  and be defined as: 

  

{ }* *
arg min sup ( )

T

ad
W

W W u
ω

φ ξ
∈Ω

= −              (15) 

 

where, { }|W Wω ωεΩ = ≤ , 0ωε >
 

is the design 

constant. So the neural network output feedback 
controller can be described as: 
  

1 ˆ ( )m

p adu k e uλ ξ−= +                                         (16)  

  

where, ˆˆ ( ) ( )T

adu Wξ φ ξ=  is the output of RBFNN, Ŵ is 

the estimated value of the optimal weight W*.  
Let the corresponding neural network weights 

updating algorithms be given by: 
 

ˆ ˆ( )W e e Wγ φ σ= −&
                                             (17)  

  
where, adaptive gain γ, σ>0

 
and to improve the 

robustness of adaptive law in the presence of the 
approximation error, we introduce the e-modification 

term. The parameter vector ��  is bounded and 
converges to the residual set:  
 

ˆ ˆ| mW Wω

φ
σ

 
Θ =  ≤ 

 
                                          (18)  

 

where ( ) mφ ξ φ≤ , mφ
 
is a constant. If ˆ (0)W ω∈ Θ , 

then ˆ ( ) , 0W t tω∈ Θ ∀ ≥ .  

 
Proof: Let us consider the following positive function: 
 

1 ˆ ˆ
2

T
V W Wω γ

=  

 
The time derivative of the function Vω along (17) is 

derived as: 
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Equation (19) implies that for ˆ mW
φ
σ

>
 

then 

0Vω ≤&  and, therefore, ˆ ( ) , 0W t tω∈ Θ ∀ ≥ . 

From (8), the time derivative of the filtered 

tracking error can be derived as: 
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where, *ˆW W W= −% . 

 

STABILITY ANALYSIS 

 

Now we can prove the following theorem, which 

shows the boundedness of all the signals in the closed-

loop system. 

 

Theorem 1: If Assumption 1 is satisfied and 

approximation error ε is bounded then, for the non-

affine nonlinear system (1), the controller input (16) 

and adaptive law (17) guarantees that all the signals in 

the closed-loop system are bounded and the state vector 

x
 
remains in: 

 

0( ) | ( ) 2 , 1, 2, ,
0.5

i i m m
x i

b
x t e t i m

k

ωφ ε
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where,
 

*mb Wω

φ
σ
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Proof: Consider the Lyapunov function candidate Vs = 
�
	 s

2
. Differentiating Vs along (20), we obtain: 
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According to (18), we know that W bω≤% , 

�� +  ∅!
" +  ‖�∗‖, then: 

 

( )2

0
( ) ( )

s m
V b ks b s bωη η φ ε≤ − + +&

             (22) 
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From the inequality 2 2( ) 2α β α β≤ + , we have 

the following inequality: 

 

( )2 2 2
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2 0

2

0

( ) 0.5 ( ) ( )

( )
( ) ( 0.5)

2

( )
    2 ( )( 0.5)

4( 0.5)

s m

m

m

s

V b ks b b s

b
b k s

b
b k V

k

ω

ω

ω

η η φ ε

φ ε
η

φ ε
η

≤ − + + +

 +
     = − − − 

 

 +
= − − − − 

&

      (23) 

 

Using the comparison principle, we obtain: 
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0
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k
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follows that: 
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Therefore, 

 

0

2
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k b t mb
s s

k
e

ωφ ε− − +
≤ +

−
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We can conclude for the above equation that s and 

x  are bounded, respectively. The state vector x
 
will 

remain in Ωx 
for all t≥T based on the method (Ioannou 

and Sun, 1996). This completes the proof. 

 

SIMULATION STUDY 

 

Consider the following non-affine nonlinear system: 

 

( )
1 2

2 3 2

2 1 2

1

0.15 0.1 1 sin(0.1 )

x x

x x u x u u

y x

=

= + + + +

=

&

&         (28) 

 

The tracking objective is to make the system output 

y follow the desired trajectory yd = 0.5 sin (π (t-0.5)). 

 
 

Fig. 2: Plots of output tracking of system 

 

 
 

Fig. 3: Plots of the weights norm 

 

 
 

Fig. 4: Plots of control input 

    

 
 

Fig. 5: Plots of output error 

 

From (28), we know 
��
�� > 0

 
which satisfy the 

assumption. The adaptive gain γ = 95.0, σ = 0.02. The 

simulation parameters are selected as follows: κ = 20.0, 

λ = 2.0, k = 22.0. According to the design process, we 

can get controller and weights update law as follows: 
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20 20 pu u u= − × + ×&  

 

( )2 ˆ22 2pu e W φ ξ= × × + ×  

 

ˆ ˆ95 ( 0.02 )W e e Wφ= × − ×&
  

 

The  system  initial  conditions  are  x1 (0) = 0, x2 

(0) = 0. The simulation result using MATLAB is shown 

in Fig. 2 to 5. 

Figure 2 and 5 shows the results of output tracking. 

It can be seen that the actual trajectory converges 

rapidly to the desired one. The weights norm is shown 

in Fig. 3 and the bounded control input is indicated in 

Fig. 4. These simulation results demonstrate the 

tracking capability of the proposed controlled and its 

effectiveness for control tracking of uncertain non-

affine nonlinear systems. 

 

CONCLUSION 

 

This study proposes a new output feedback 

adaptive neural network adaptive controller for modern 

agricultural mechanical systems. The distinguished 

aspect of the proposed control algorithm is that no state 

observer is employed. Only the output error is used to 

generate control input and update laws. The stability 

analysis depends heavily on the universal function 

approximation property, only one RBFN is employed to 

approximate the lumped uncertain nonlinear function 

(16). There are no restrictive conditions on the design 

constants. So the system construct is very simple. 

Output tracking error and all states in the closed-loop 

system are guaranteed to be bounded by Lyapunov 

approach. Simulation results have verified the 

effectiveness of the proposed approach. 
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