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Calibration for the Simultaneous Determination of Amino Acids in Mixtures 
 

Xiaobo Zuo, Sheng Fang and Xianli Liang 
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Abstract: The simultaneous determination of amino acids in solution is important for food and nutrient industries. 
This study investigated the feasibility of potentiometric titration with synergy interval Partial Least Square (siPLS) 
for the simultaneous determination of glycine, glutamic acid and phenylalanine in aqueous solution. The methods 
used were compared with the traditional Partial Least Square (PLS) that based on full pH range. The performance 
was evaluated by the Root Mean Square Error of Cross-Validation (RMSECV), the Root Mean Square Error of 
Prediction (RMSEP) and the correlation coefficient (R). By optimizing the pH region with siPLS, a good linear 
model was produced for the calibration set with correlation coefficient R of 0.9947, 0.9956 and 0.9913 for glycine, 
glutamic acid and phenylalanine, respectively. A single set of synergy mixtures was tested independently and good 
results were obtained. The results show that the siPLS method can locate the informative region by using a 
graphically-oriented interface which is more easily to use and interpret. The study proves the feasibility of potential 
titration with chemometrics in the simultaneous determination of amino acid mixtures without preliminary 
separation. 
 
Keywords: Amino acids, chemometrics, partial least square, potentiometric titration 

 
INTRODUCTION 

 
The simultaneous determination of different amino 

acids in solution is especially important for food and 
biopharmaceutical manufacturing as well as other 
related industries (Wakayama et al., 2010). Until now, 
HPLC based method is the most popular methodology 
for analyzing amino acid components. A wide range of 
pre- or post-column fluorescent labeling reagents such 
as fluorescamine, ninhydrin, 7-fluoro-4-nitrobenz-2, 1, 
3-oxodiazole and dansyl chloride etc are developed for 
the HPLC analysis of different amino acids by using 
fluorescence  detector  (Zhao  et  al.,  2013;  Redruello 
et al., 2013; Chen et al., 2005). In addition to the HPLC 
method, gas chromatography, capillary electrophoresis 
and liquid chromatography combined with mass 
spectrometry are also developed for the determination 
of amino acids (Mudiam et al., 2012; Mohabbat and 
Drew, 2008; Smith, 1997). These methods are quite 
well suited for the simultaneous determination of amino 
acids in complex system, especially when unknown 
substances are presented in the mixture. However, there 
are some cases that the amino acids in mixtures are with 
the same type but in different concentrations, such as 
some amino acids nutrient solutions (Ohtani et al., 
2006; Cerdán et al., 2013) and amino acid mixtures that 
extracted from protein hydrolysates (Liebster et al., 

1961; Moore and Stein, 1949) in food industry. For 
these samples, a simple and efficient way other than the 
expensive and time consuming HPLC methods, for the 
simultaneous determination of different amino acids 
will be beneficial. 

The potentiometric titration method is always used 
for determining concentration of single amino acid in 
solution, but can hardly be used for the simultaneous 
determination of several amino acids in the mixture 
(Michalowski et al., 2005; Ni and Kokot, 2008). 
Nowadays, the application of chemometrics in food 
industries has been an interesting area in the resolution 
of multi–component mixtures offers the advantages of 
fast, minimizing preliminary separation steps and 
eliminating the use of chemical reagents (Munck et al., 
1998; Christensen et al., 2006). For potentiometric 
titration, the application of chemometrics was first 
introduced by Lindberg and Kowalski (1988) for the 
simultaneous analysis of acids with Partial Least 
Squares (PLS) regression. After that, several papers 
have been published using PLS calibration method to 
acid-base titration (Ni, 1998; Shamsipur et al., 2002), 
potentiometric precipitation titration (Ni and Wu, 1999) 

and complexometric titration (Zhang et al., 2005). 
Recently, many new algorithms such as Artificial 
Neural Network (ANN) and orthogonal signal 
correction have been applied to process the 



 

 

Adv. J. Food Sci. Technol., 6(11): 1209-1218, 2014 

 

1210 

potentiometric titration of different acid mixtures (Song 
et al., 1993; Aktaş and Yaşar, 2004; Ghorbani et al., 
2006). For example, the orthogonal signal correction 
has been applied to the simultaneous conduct metric 
titration of mixtures of acetic acid, monochloroacetic 
acid and trichloroacetic acid (Ghorbani et al., 2006). 
However, all these multivariate calibration methods in 
titration used the whole information pH region to build 
a calibration model and very little attention has been 
given to the optimized variable selection in regression. 

It has been demonstrated that the performance of 
optimal variable selection before regression in 
multivariate calibration can improve the accuracy and 
robustness of the model (Li et al., 2014; Du et al., 
2004; Jiang et al., 2002). Many algorithms that used for 
the optimal variable selection have been developed and 
applied, such  as moving windows based methods (Du 
et al., 2004; Jiang et al., 2002; Fang et al., 2009), 

genetic algorithm (Goicoechea and Olivieri, 2003), 
synergy interval PLS (siPLS) (Norgaard et al., 2000; 
Leardi and Nørgaard, 2004) and CLoVA 
(Hemmateenejad et al., 2013; Hemmateenejad and 
Karimi, 2011) Very recently, the genetic algorithm and 
Competitive Adaptive Reweighted Sampling (CARS) 
method were used to select the effective wavelengths in 
the simultaneous determination of three branched-
amino acids (leucine, isoleucine and valine) by Fourier 
transform near-infrared spectral technique (Wei et al., 
2014). In these methods, the iPLS and siPLS  
(Norgaard et al., 2000; Leardi and Nørgaard, 2004) 
have been shown as efficient tools to choose the 
optimal sub regions in a graphical manner which can 
provide an overall picture of the model performance in 
different subintervals. Many papers have indicated that 
the optimal subintervals selected by iPLS or siPLS 
methods could provide more precision prediction 
results than traditional PLS model which based on full-
spectrum region. For example, the spectrophotometric 
methods combined with iPLS or siPLS have 
successfully applied for the determination of total 
volatile basic nitrogen content of pork (Cai et al., 
2011), quality parameters of biodiesel/diesel blends 
(Ferrão et al., 2011), contents in vinegar (Chen et al., 
2012a, b), antioxidant activity in dark soy sauce 
(Ouyang et al., 2012). However, to the best of our 
knowledge, the application of iPLS and siPLS to 
potentiometric titration multivariate calibration to select 
the optimal pH subintervals has not yet been explored 
(Fang et al., 2009). 

The aim of this study was to explore the potential 
of siPLS algorithm for the optimal subintervals 
selection in potentiometric titration multivariate 
calibration and its use for the simultaneous 
determination of amino acids mixtures in aqueous 
solution. The ternary mixtures of glycine, glutamic acid 
and phenylalanine in aqueous solution are used as a 
model system. The performance was evaluated 
according to the Root Mean Square Error of Cross-
Validation (RMSECV), the Root Mean Square Error of 
Prediction (RMSEP) and the correlation coefficient (R).  

MATERIALS AND METHODS 
 
Materials: All amino acids are analytical-reagent grade 
chemicals. Stock solutions of hydrogen chloride (0.1 
M), L-glycine (0.05 M), L-glutamic acid (0.05 M) and 
L-phenylalanine (0.05 M) were prepared according to 
classical method with ultra-pure water throughout. The 
resistivity of ultra-pure water is ≥18.2 MΩ·cm. Since 
no standardization procedure for potentiometric 
titration multivariate calibration was necessary, the 
prepared 0.1 mol/L NaOH solution was used both for 
calibration and prediction. Solutions of sodium chloride 
(NaCl) with 1.0 M and Hydrogen Chloride (HCl) with 
0.1 M were prepared to adjust the ionic strength and 
initial pH of the sample solutions, respectively.  
 
Equipments and apparatus: The titrations were 
conducted in batch mode with magnetic stirrer, syringe 
pumps and the glass vessels, which were standard 
equipments. A syringe pump (Harvard apparatus) was 
used for the precise addition of the titrant. 
Measurements of pH (± 0.001) were carried out with a 
Metrohm pH meter by using a combined glass 
electrode. All experiments were performed at room 
temperature about 22°C. All calculations were 
performed on a PC with the Windows operating system, 
which was equipped with the Excel and Matlab 
programs. The iToolbox (Norgaard et al., 2000; Leardi 
and Nørgaard, 2004) for Matlab was used for the 
variable selection and multivariate models of iPLS and 
siPLS.  
 
Procedure: In a typical procedure, a suitable amount of 
three amino acids stock solution was placed in a glass 
vessel. Then 1.0 mL of 1.0 M sodium chloride (NaCl) 
solution and 0.4 mL of 0.1 M Hydrogen Chloride (HCl) 
solution were added to the vessel for adjusting the ionic 
strength and initial pH of solution, respectively. Since 
the same amount of hydrogen chloride was added to all 
the samples in calibration and prediction sets, the effect 
of hydrogen chloride in the calibration was neglect 
able. The solution was finally diluted up to 5.0 mL with 
ultra pure water. The mixture was stirred and then 
titrated by the precise addition of sodium hydroxide 
with flow rate ranged between 0.15 and 0.35 mL/min. 
The pH meter was used to monitor the solution pH data 
during titration and the titrant volumes added to reach 
the predetermined pH values were recorded. Finally, 
the experimental data were processed and two matrices 
of titration data were obtained; the volume of titrant at 
each pH point (0.1 pH interval from 3.0 to 12.0) formed 
the first matrix V and the concentration of three amino 
acids formed the second matrix C.  
 
Statistics analysis: For the construction of 
chemometrics model, two common statistical 
parameters    were    chosen   to   evaluate   the     model  
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performance in the prediction ability of glycine, 
glutamic acid and phenylalanine in aqueous mixtures. 
The first parameter is the root mean square error of 
cross validation (RMSECV) and Root Mean Square 
Error of Prediction (RMSEP) as shown in Eq. (1). The 
RMSECV or RMSEP parameter is an expression of the 
average error in the analysis of each amino acid in the 
calibration or prediction set: 
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Another commonly used parameter is the relative 

error of prediction (REP) that indicates the predictive 
ability of established chemo metrics model for each 
component, as calculated from the following equation:  
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where, ci is the reference concentration and ci,pred 
represents the predicted concentration of the analyte in i 
sample by chemometrics model and n is the number of 
sample used. Correlation coefficient R was calculated 
by equation: 
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where, ci,ave is the mean of the reference results for all 
samples in calibration or prediction set. 
 

RESULTS AND DISCUSSION 

 

In the traditional acid-base titration system, the 
endpoints are always determined by visual indicators. 
However, for acid mixtures when the ∆pK between any 
two acids is less than 4 logarithmic units, the titration 
curve will be overlapped and it will make the 
determination of endpoint more difficult. For amino 
acids used in this study, the pK values are listed in the 
Table 1. As can be seen in the Table 1 that pK of all 
these three species are very close and far less than 4 
units. In the traditional titration method, the titration 
curve of these amino acids will be overlapped and 
affected each other. Under that condition, multivariate 
calibration methods can be used to the pH titration for 
the simultaneous determination of amino acids in 
mixtures and offer the advantage of eliminating 
preliminary separation steps.   
 
Experimental design of the calibration sets: The 
multivariate  calibration process requires a training data  

Table 1: The pKa values of glycine, glutamic acid and phenylalanine 
from reference (Henchoz et al., 2007) 

Amino acid 
pK1 

(a-COOH) 
pK2 

(a-NH3
+) 

pKR 

(β-COOH) 
Glycine 2.43 9.60  
Glutamic acid 2.29 9.87 4.10 
Phenylalanine 2.18 9.15  

 
Table 2: Concentration data of different mixtures in the calibration set 

Samples 

Concentration (mmol/L) 
-------------------------------------------------------------------
L-glycine 
(Gly) 

L-glutamic acid 
(Glu) 

L-phenylalanine 
(Phe) 

M1 4.000  4.000  4.000  
M2 4.000  8.000  8.000  
M3 4.000  12.00  12.00  
M4 4.000  16.00  16.00  
M5 8.000  4.000  8.000  
M6 8.000  8.000  4.000  
M7 8.000  12.00  16.00  
M8 8.000  16.00  12.00  
M9 12.00  4.000  12.00  
M10 12.00  8.000  16.00  
M11 12.00  12.00  4.000 
M12 12.00  16.00  8.000  
M13 16.00  4.000  16.00  
M14 16.00  8.000  12.00  
M15 16.00  12.00  8.000 
M16 16.00  16.00  4.000  

 
set, which includes the known concentration of each 
substances and the corresponding pH titration spectrum 
of that sample. Then, some of the multivariate 
calibration algorithm such as principal component 
regression or partial least squares PLS are applied to 
construct a mathematical model. The established model 
can be efficiently used to predict the concentrations of 
unknown mixtures. In this study, a calibration set 
contains 16 standard solutions was prepared according 
to four-level orthogonal design. It is known that the 
using of orthogonal design to construct a training set, 
maximum information can be obtained from only a few 
samples (Ni, 1998). In Table 2, all the concentrations of 
the ternary mixtures in the calibration set are 
summarized.  

Many works have pointed out that it was necessary 
to preprocess the raw spectrum in order to develop 
stable and reliable calibration models (Ni, 1998; 
Shamsipur et al., 2002; Ni and Wu, 1999). In this study, 
the simple smoother developed by Savitzky and Golay 
(1964) was applied. The SG Smoothing could give 
balance in such a way that the noise is maximally 
removed, while the signal features are kept intact as 
much as possible (Savitzky and Golay, 1964). It is 
known that the SG algorithm contains two parameters, 
the polynomial order N and the window size W. Here, 
we use the Root Mean Square Error (RMSE) for the 
calibration set by full spectrum PLS were compared as 
a criterion, under different polynomial order N and 
window size W. Finally, an optimized combination of N 

= 3 and W = 5 was chosen, which is a good compromise 
in practice. The titration curve of calibration mixtures 
after SG smoothing are presented in Fig. 1. From Fig. 1,  
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Fig. 1: The titration curve for samples after Savitzky and Golay (1964) smoothing: (a) calibration samples and (b) prediction 

samples 
 

 
 
Fig. 2: Cross-validated prediction errors (RMSECV) values to full-pH model and interval models (bars) to glycine determination 

using PLS and iPLS algorithms (dotted line and numbers above interval numbers refers to full-spectrum RMSECV and 
latent variables using in each model, respectively) 

 
it can be found that all the titration curves have a large 
jump in the pH range 5-8 which is corresponding to the 

acid group of amino acids with pK between 2 and 4. It 
also can be seen that the y-coordinates of titration 
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volume V and x-coordinates of pH resemble the 
absorbance and wavelength in traditional       
spectrophotometry, respectively. From this point of 
view, the titration curve could be seen as the titration 
spectrum and any chemometrics algorithm used in 
spectrum can be applied to titration multivariate 
calibration.  
 
siPLS model for selecting optimal regions: For the 
building of iPLS and siPLS models, the full pH range 
between pH 3.0 and 12.0 was first divided into 7 
equidistant subintervals, with 11 pH points in each 
interval. For every subinterval, a PLS model with 
different numbers of latent variables was established. 
The RMSECV for every model was calculated as a 
critical value for the comparison with the whole pH 
region model. Figure 2 shows the RMSECV obtained 
by iPLS for each subinterval and latent variables for 
each model that represented by number in the bars. The 
RMSECV for the full pH region using 6 latent variables 
are shown by the dotted line for the purpose of 
comparison. It can be found that the iPLS model with 
interval number 6 at pH between 9.5 and 10.8 give the 
smallest RMSECV values with 0.6085. This result is 
better than 0.7936 of the full–pH region PLS model as 
shown in Table 3.  

The iPLS method can find out the optimal 
subinterval, however, the different combinations of 

subintervals may result in models with better predictive 
abilities. Therefore, based on the results obtained 
above, variables selection by siPLS was implanted to 
test different combinations of intervals. The principle of 
siPLS method is to calculate all different combinations 
of two, three or four subintervals that obtained by iPLS 
model. The results of different combinations obtained 
by PLS, iPLS and siPLS were shown in Table 3. As can 
be seen in the table, many combinations of subintervals 
give better results than full region and subinterval 6. 
The combination of 2, 6 and 7 subintervals with 6 latent 
variables gives the lowest RMSECV with 0.4740 that 
was far better than the subinterval 6. The results 
demonstrate that the siPLS algorithm can avoid the 
loose of relevant information region which will 
improve the performance of calibration model.  

For a full view of model comparisons, a graphic 
test of PLS, iPLS and siPLS model for glycine was 
shown in Fig. 3. The results in Table 3 and Fig. 3 
clearly show that the selection of optimal pH region in 
potentiometric titration multivariate calibration improve 
the model performance. The correlation coefficient R 
improves from 0.9844 for PLS to 0.9947 for siPLS 
model. As shown in Fig. 3, the combined subintervals 
2, 6 and 7 with pH region 4.3-5.6 and 9.5-12 were 
finally selected to construct the calibration model for 
glycine. It is interesting to find out that this pH

 

 
 
Fig. 3: The graphic and statistic results of PLS, iPLS and siPLS for glycine 
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Table 3: Results of PLS, iPLSand siPLS models for glycine determination 
Intervals pH range LVs Method R RMSECV 
Full 3-12 6 PLS 0.9844 0.7936 
6 9.5-10.8 4 iPLS 0.9908 0.6085 
2, 6 4.3-5.6 and 9.5-10.8 4 siPLS 0.9925 0.5478 
1, 6 3-4.3 and 9.5-10.8 5 siPLS 0.9918 0.5722 
4, 6 4.3-5.6 and 9.5-10.8 5 siPLS 0.9907 0.6081 
2, 6, 7 4.3-5.6 and 9.5-12 6 siPLS 0.9947 0.4740 
1, 6, 7 3-4.3 and 9.5-12 7 siPLS 0.9939 0.4978 
2, 3, 6 4.3-6.9 and 9.5-10.8 4 siPLS 0.9923 0.5553 

 
Table 4: Results of PLS, iPLSand siPLS models for glutamic acid determination 
Intervals pH range LVs Method R RMSECV 
Full 3-12 3 PLS 0.9915 0.5866 
2 4.3-5.6 3 iPLS 0.9956 0.4189 
2, 3 4.3-6.9 3 siPLS 0.9956 0.4258 
1, 2 3-5.6 3 siPLS 0.9940 0.4918 
3, 4 5.6-8.2 2 siPLS 0.9936 0.5076 
1, 3, 7 3-4.3 and 5.6-6.9 and 10.8-12 3 siPLS 0.9935 0.5128 
1, 2, 3 3-6.9 3 siPLS 0.9933 0.5206 
1, 3, 6 3-4.3 and 5.6-6.9 and 9.5-10.8 3 siPLS 0.9933 0.5213 
1, 3, 5 3-4.3 and 5.6-6.9 and 8.2-9.5 3 siPLS 0.9932 0.5265 

 
range was exactly locate in the information regions of 
the glycine with pK1 of 2.43 and pK2 of 9.60. This 
result further confirms that siPLS can automatically 
locate the informative region for the given substance in 
multicomponent potentiometric titration. It can also be 
seen that the use of a graphically-oriented interface as 
shown in Fig. 3 in the iPLS and siPLS toolbox make it 
more easy to use and interpret the obtained results.  

Table 4 shows the model results of PLS, iPLS and 
siPLS for glutamic acid. As can be seen that the full pH 
region PLS calibration model result a RMSECV of 
0.5866 with 3 latent variables. In addition, the selected 
subintervals and their combinations all give better 
results compare with the full pH region PLS model. 
However, it is found that the combination of two or 
three subintervals does not give better results than the 
single subinterval 2.  

As shown in Table 4, the subinterval 2 with pH 
range 4.3-5.6 give the best result with a correlation 
coefficient R of 0.9956 and RMSECV of 0.4189. So the 
intervals were selected to build the final iPLS model for 
glutamic acid. The above results for glutamic acid seem 
interesting, since the addition of other subintervals does 
not improve the model performance as in the case of 
glycine. It is known that the glutamic acid molecule 
contains another β-COOH group with pK of 4.1 by 
compare with glycine or phenylalanine. The optimal pH 
region of 4.3-5.6 obtained by iPLS may correspond to 
information area of this acid group. The different pK of 
β-COOH group in glutamic acid molecule make it 
sufficient to characterize glutamic acid in the known 
mixture. So the addition of information area of a-
COOH and a-NH3

+ that are very close to glycine and 
phenylalanine  will  in  turn bring more interference and 
perturbation factors. This result demonstrated the needs 
of pH or wavelength selection in the potentiometric 

titration multivariate calibration to build a robust model 
(Fig. 4).  

The siPLS was also applied for the quantification 
of phenylalanine. In the same way, the whole pH was 
divided into 7 equidistant subintervals. The correlation 
coefficient R and RMSECV are calculated and shown 
in Table 5. It can be seen that the best iPLS model 
using number 5 subintervals with pH region of 8.2-9.5 
does not produce better results than the full pH region 
PLS model. On the other hand, combinations of two or 
three subintervals can give lower RMSECV values than 
the full pH region PLS model. These combinations 
always contain the number 6 or 7 subintervals with pH 
regions of 9.5-10.8 or 10.8-12, respectively. Take into 
account that the phenylalanine contains a-NH3

+ group 
that with lowest pK of 9.15 in all the three amino acids. 
So the information area for phenylalanine may locate at 
high pH regions. We found that the combination of 5, 6 
and 7 subintervals can give a RMSECV value of 0.6178 
with only 4 LVs. Although it gives a little larger 
RMSECV than the combination of 3, 6 and 7 with 
0.5809, the model with combination of 5, 6 and 7 
contains less number of LVs. It is known that the over 
fitting problem may occur at large number of LVs. As 
pointed out by Norgaard et al. (2000) the over fitting 
problem is not only case for siPLS toolbox but goes for 
all variable selection methods. So for variable selection 
in potentiometric titration or spectrum multivariate 
calibration, carefully selection with knowledge of 
molecular information will be beneficial to build a 
robust model. Here, the siPLS models using the pH 
subintervals 5, 6 and 7 were developed and used for the 
quantification of aspartame.  

 
Prediction of synthetic mixtures of amino acids: In 
order to evaluate the predictive ability of different 
models in the analysis of real samples, the analysis of 
eight three-component of synthetic three-component 
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Fig. 4: Regions selected to build models with subinterval 2 at pH 4.3-5.6 and results for glutamic acid 
 
Table 5: Results of PLS, iPLS and siPLS models for phenylalanine determination 
Intervals pH range LVs Method R RMSECV 
Full 3-12 4 PLS 0.9831  0.8033 
5 8.2-9.5 3 iPLS 0.8425  2.6736 
2, 6 4.3-5.6 and 9.5-10.8 3 siPLS 0.9900  0.6537 
5, 6 8.2-10.8 4 siPLS 0.9880  0.7159 
4, 6 6.9-8.2 and 9.5-10.8 4 siPLS 0.9869  0.7249 
3, 6 5.6-6.9 and 9.5-10.8 3 siPLS 0.9867  0.7422 
3, 6, 7 5.6-6.9 and 9.5-12 6 siPLS 0.9923  0.5809 
1, 6, 7 3-4.3 and 9.5-12 7 siPLS 0.9917  0.6167 
5, 6, 7 8.2-12 4 siPLS 0.9913  0.6178 
4, 6, 7 6.9-8.2 and 9.5-12 6 siPLS 0.9909  0.6289 
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Table 6: Added and found results of the synthetic mixture of glycine (Gly), glutamic acid (Glu) and phenylalanine (Phe) by the PLS and siPLS 
methods 

Added 
---------------------------- 

PLS found 
-------------------------------- 

Recovery% 
------------------------------ 

siPLS found 
----------------------------------- 

Recovery% 
--------------------------------

Gly Glu Phe Gly Glu Phe Gly Glu Phe Gly Glu Phe Gly Glu Phe 
6.00 5.000 13.00 5.700 4.880 12.69 95 98 98 5.870 4.94 12.70 98 99 98 
7.00 7.000 4.800 6.790 6.950 5.010 97 99 104 6.910 6.95 4.520 99 99 94 
13.30 13.00 6.000 13.69 13.44 6.090 103 103 102 13.51 13.04 6.560 102 100 109 
5.20 14.80 9.800 4.940 15.33 9.240 95 104 94 5.110 14.26 9.640 98 96 98 
10.60 9.200 9.000 10.80 9.080 9.320 102 99 104 10.71 8.92 9.160 101 97 102 
11.30 5.800 12.00 11.05 6.020 10.96 98 104 91 11.16 5.90 11.39 99 102 95 
15.00 11.00 7.200 14.44 11.17 7.860 96 102 109 14.28 10.90 7.830 95 99 109 
9.00 14.20 15.20 9.380 13.87 14.97 104 98 98 8.960 13.91 15.59 100 98 103 

 
Table 7:  Statistical parameters of the optimal results by using PLS and siPLS to determine glycine (Gly), glutamic acid (Glu) and phenylalanine 

(Phe) in synthetic mixtures 

Parameters 

PLS 
-------------------------------------------------------------------- 

siPLS 
--------------------------------------------------------------------------

Gly Glu Phe Gly Glu Phe 
pH region 3.0-12.0 3.0-12.0 3.0-12.0 4.3-5.6 and 9.5-12 4.3-5.6 8.2-12 
RMSEP 0.34 0.29 0.52 0.28 0.24 0.43 
RSEP% 3.3 2.8 5.1 2.8 2.3 4.2 
R2 0.990 0.995 0.983 0.994 0.998 0.985 

 
glycine, glumatic acid and phenylalanine mixtures was 
carried out. The synthetic mixtures used were first 
titrated by the same concentration solution of NaOH 
and the obtained data are then pretreated by the 
Savitzky-Golay smoothing algorithm with the same 
parameters as in the calibration set. The titration 
spectrum of prediction set after Savitzky-Golay 
smoothing was also shown in Fig. 2. For each amino 
acid, the concentrations were predicted by the 
calibration model based on the full pH region PLS and 
the iPLS or siPLS optimized above. Table 6 shows the 
concentrations of each amino acid and the obtained 
results by applying different algorithm to all eight 
synthetic samples. Table 6 also shows the recovery of 
glycine, glutamic acid and phenylalanine by different 
methods in the predict series. As can be seen in the 
table, the recovery of compounds was also quite 
acceptable. 

Table 7 summarized the obtained values of 
statistical parameters including RMSEP, RSEP% and R 
for each amino acid in the prediction set. It can be 
found that all the chemometrics methods that based on 
factor analysis can achieve good results in resolving the 
overlapping potentiometric titrations curves of glycine, 
glutamic acid and phenylalanine in their ternary 
mixtures, although the solution equilibrium in the acid–
base titration procedure is complex. The results also 
show that the using of selected variables (pH) by iPLS 
and siPLS method presents better predictions with 
lower errors in relation to the full pH region PLS 
model. The results clearly show the successful 
application of iPLS and siPLS variable selection 
method to potentiometric titration multivariate 
calibration as a pre-processing method before the 
traditional PLS regression.  

The purpose of this study is to determine the 
feasibility of applying siPLS method to potentiometric 
titration multivariate calibration. It can be seen that the 

siPLS method that based a graphically-oriented 
interface make it more easily to use and interpret the 
obtained results in potentiometric titration multivariate 
calibration. The successful application of wavelength 
selection iPLS and siPLS method that based on graph 
interface for potentiometric titration indicated that this 
method may have general implications in other types of 
titration calibration, such as potentiometric precipitation 
titration (Ni and Peng, 1995) and complexometric 
titration (Ni and Wu, 1997). Finally, it must be pointed 
out that as a calibration method (Assefa et al., 2013; Xu 
et al., 2012), when large noise and other interference 
substance are presented in the mixtures which are not 
included in the calibration set, the method may lead to 
large error. 
 

CONCLUSION 

 
This study investigated the applicability of iPLS 

and siPLS algorithm for the variable selection in 
potentiometric titration multivariate calibration. The 
potentiometric titration multivariate calibration 
combined with variable selection by the iPLS and 
siPLS was tested by the simultaneous determination of 
glycine, glutamic acid and phenylalanine in aqueous 
solution. The results show that the using of selected 
variables by iPLS and siPLS method presents better 
predictions with lower errors in relation to the full pH 
region PLS model. The toolbox can automatically 
locate the informative region for the given substance by 
using a graphically-oriented interface, make it easily to 
use and interpret the obtained results. The study proves 
the feasibility of potentiometric titration with chemo 
metrics method in the simultaneous determination of 
amino acids in mixtures without the need for 
preliminary separation steps and also demonstrated the 
utility of siPLS in titration multivariate calibration for 
optimal variable selections.  
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