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Research Article 

Height-diameter Models of Chinese Fir (Cunninghamia lanceolata) Based on  
Nonlinear Mixed Effects Models in Southeast China 

 

Hao Xu, Yujun Sun, Xinjie Wang and Ying Li 
Key Laboratory for Silviculture and Conservation of Ministry of Education,  

Beijing Forestry University, Beijing, China 
 

Abstract: Tree height and diameter at breast height are two important forest factors. The best model from 23 height-
diameter equations was selected as the basic model to fit the height-diameter relationships of Chinese fir with one 
level (sites or plots effects) and nested two levels (nested effects of sites and plots) Nonlinear Mixed Effects 

(NLME) models. The best model was chosen by smaller Bias, RMSE and larger ����
� . Then the best random-effects 

combinations for the NLME models were determined by AIC, BIC and -2LL. The results showed that the basic 
model with three random effects parameters ϕ1, ϕ2 and ϕ3 was considered the best mixed model. The nested two 
levels NLME model considering heteroscedasticity structure (power function) possessed with higher predictable 
accuracy and significantly improved model performance (LRT = 469.43, p<0.0001). The NLME model would be 
allowed for estimating accuracy the height-diameter relationships of Chinese fir and provided better height 
predictions than the models using only fixed-effects parameters. 
 
Keywords: Cunninghamia lanceolata, height-diameter models, heteroscedasticity, nonlinear mixed effects models 

 
INTRODUCTION 

 
Chinese fir (Cunninghamia lanceolata (Lamb.) 

Hook) is the most important afforestation tree species, 
which has fast-growth and good wood qualities in 
southeast China. According to the National Continuous 
Forest Inventory, about 11.26 million ha and 734.09 
million m

3
 of Chinese fir were distributed more than 10 

provinces in China in 2010, making it the major species 
in terms of volume harvested. However, as a result of 
great variability exists among stands in terms of 
silvicultural and ecological conditions, it needs proper 
management, especially management tools. 

Knowledge of the individual tree height (h) and 
diameter at breast height outside bark (dbh, measured 
1.30 m above ground level) is fundamental for 
developing growth and yield models in forest stands. 
However, measuring diameter is more accurate, quicker 
and cheaper than measuring tree height (Colbert et al., 
2002). As a result, in forest inventories, diameter is 
measured for all the sampled trees, but height is 
measured only for a subsample of trees (Calama and 
Montero, 2004) and as h and dbh are correlated, it is 
common practice to fit height-diameter (h-d) models to 
predict h from measured dbh (Crecente-Campo et al., 
2010b).  

The relationship between h and dbh varies from 
stand to stand (Curtis, 1967), which is usually 
determined by measurements of both variables from 

trees growing in different stands or site class of the 
sample plot. This hierarchical structure (i.e., plots 
within a site class) makes the measurements dependent 
(Calama and Montero, 2004; West et al., 1984). As a 
result, there is spatial correlation among measurements 
in the sampling unit (Fox et al., 2001). However, the 
stochastic structure is often ignored and independence 
between measurements is assumed (Biging, 1985; 
Fitzmaurice et al., 2004; Gutzwiller and Riffell, 2007; 
Keselman et al., 1999). Therefore, the Ordinary Non-
linear Least Squares (ONLS) regression has biased 
estimates of the standard error of parameter estimation 
(Schabenberger and Gregoire, 1995). Many researchers 
take the Nonlinear Mixed-Effects (NLME) models into 
account to develop h-d models (Adame et al., 2008a; 
Calama and Montero, 2004; Crecente-Campo et al., 
2010a; Sharma and Parton, 2007). 

The fixed-effects parameters in NLME models are 

associated with an entire population, as in traditional 

regression, while the random-effects parameters are 

associated with individual experimental units (Pinheiro 

and Bates, 2000). Because of their versatility, the 

mixed-effect modeling approach is more useful than 

ONLS fitting. Use of NLME models allows h-d models 

to be calibrated by predicting random components from 

plot- or site-level covariates when a new subject is 

available (one not used in the fitting of the model), 

using the Empirical Best Linear Unbiased Predictors 
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(EBLUPs) (Adame et al., 2008b; Calama and Montero, 

2005; Nigh, 2012). 

The research  aimed  to develop an h-d model for 
C. lanceolata (Lamb.) Hook in Fujian province, 
southeast China. A nested two levels nonlinear mixed 
modeling approach which included both fixed and 
random components was applied to the hierarchical 
structure of the dataset to diminish the level of variance 
among sampling units were included as covariates. In 
this study, we considered one level and nested two 
levels to build NLME h-d models, the first level is site 
and the second level is plot (nested within site). Our 
preliminary analysis showed that NLME models with 
random effects effectively removed the 
heteroscedasticity could provide important tools for 
sustainable management for this species in the study 
area. The predictive ability of the developed model and 
the applicability of NLME model technique were 
demonstrated on a separate validation dataset. 

 
MATERIALS AND METHODS 

 
Data: The Chinese fir stands located in Jiangle state- 
owned forest farm (117°05′-117°40′E, 26°26′-27° 04′ 
N) in southeast China. The soil type is red soil. Average 
annual precipitation is about 1699 mm. Annual mean 
frost-free season is 287 days. Annual mean temperature 

is 18.7°C. 

Data used in this study were collected from 29 

sample   plots  of  Chinese  fir  even  trees  from  4 sites 

which located in 4 regions, Qiantan, Shuinan, Yuhua 

and Yuandang work areas, which were numbered I, II, 

III and IV, respectively (Fig. 1). These sample plots 

were established from 2010 to 2013 and square in sharp 

but vary in size from 400 to 600 m
2
. All standing live 

trees (height>1.3 m) on the plots were measured for 

breast-height diameter over bark (at 1.3 m above 

ground), total tree height. These data were randomly 

divided into two datasets with 75% used for model 

fitting and 25% used for model validation. Summary 

statistics for both fitting and validation datasets are 

shown in Table 1. 

 

Methods: 

Nested two levels NLME model: Available data were 
based on a sample of multiple measurements (diameter 
at breast height-height) taken from different plots 
located in different regions. As a consequence of this 
nested structure, we detected high correlation among 
measurements taken from the same plot. To alleviate 
this, a mixed-model approach has been proposed by 
other  authors  (Crecente-Campo  et  al., 2010b; Adame 
et al., 2008a, b; Sharma and Parton, 2007). A general 
expression for a NLME model can be defined as 
(Lindstrom and Bates, 1990; Vonesh and Chinchilli, 
1997): 
 

( ),ijk ijk ijk ijkh = f dφ ε+ , 1,...,  i M=  

1,...,
i

j M= , 1,...,  ijk n=                (1) 

 

 
 

Fig. 1: Twenty nine sample plots located in four regions in Fujian province, southeast China 
 
Table 1: Summary statistics for both fitting and validation datasets 

Dataset Region Plot amount dbh (cm) h (m) SAL (m) SS (°) SCD (%) SAG (year) 

Fitting data I 5 4.7-34.5 (6.1) 4.7-27.7 (4.2) 234 28 0.7 37 

 II 7 2.9-42.7 (6.2) 3.8-28.0 (4.5) 249 30 0.7 25 
 III 5 5.0-34.2 (7.0) 3.5-30.6 (5.3) 245 34 0.8 29 

 IV 5 2.0-25.3 (4.8) 1.8-22.9 (4.2) 220 32 0.7 10 

Validation data I 2 5.3-35.1 (6.8) 5.1-29.1 (5.5) 253 27 0.8 34 
 II 2 3.6-31.0 (5.5) 4.4-28.1 (3.9) 266 33 0.8 27 

 III 1 5.3-35.6 (6.8) 4.9-24.4 (3.8) 244 32 0.8 26 
 IV 2 2.1-14.9 (2.3) 2.3-11.6 (1.6) 210 34 0.9 10 

Total  29 (7) 2.0-42.7 (6.7) 1.8-30.6 (5.7) 240  31  0.8  25  

SAL: Stand altitude; SS: Stand slope; SCD: Stand canopy density; SAG: Stand age; The numbers in the brackets of plots are sample plots and the 

numbers in the brackets of dbh and h are standard deviations 
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Table 2: Mathematical expressions of the height-diameter equations 

Function No.  Function Function No. Function Function No. Function 

1 2

1
1 3h . d φφ= +  9 ( ) 2

11.3 1h d d
φ

φ= + +    17 ( )3

1 21.3 1 1h d
φφ φ = + +   

2 ( )1 2 1
1.3

d
h e

φ φ+ += +  10 ( )3

1 21.3 1
d

h e
φφ φ −= + +  18 ( )2 3

1
1.3

d
h e

φ φφ += +  

3 ( )1 21.3h d dφ φ= + +  11 ( ) 3
2

1
1.3 1 dh e

φφφ −= + −  
19 1 21.3h e dφ φ= +  

4 ( )2

11.3 1
d

h e
φφ −= + −  12 ( )32

11.3 1
d

h e
φφφ −= + −  20 2

1
1.3 dh de φφ −= +  

5 ( )22

1 21.3h d dφ φ= + +  
13 3

2

11.3
d

eh e
φφφ

−−= +  
21 32

11.3
d

h d e
φφφ −= +  

6 2

1
1.3 dh eφφ= +  14 3

2

11.3 dh e
φφφ

−−= +  22 2
32

11.3 dh d e φφφ −= +  

7 2

11.3
d

h e
φφ= +  15 ( )2 2

1 2 31.3h d d dφ φ φ= + + +  23 2

1 2
1.3h d dφ φ= + +  

8 ( )1 21.3 1h d d dφ φ= + + +  16 3
2

11.3 dh d
φφφ

−

= +    

ϕ1, ϕ2 and ϕ3: The parameters of models 

 

where,  

M  =  The number of sites  

Mi  =  The number of plots within the i
th

 site  

nij  =  The number of measurements 

hijk  =  The height of the k
th

 tree in the j
th

 plot within the 

i
th

 site 

dijk  =  The diameter at breast height 

ϕijk  =  A parameter vector 

r×1  =  (where r is the number of parameters in the 

model)  

f  =  A nonlinear function of the predictor variables 

and the parameter vector 

εijk  =  The within-group error including the within-

group variance (Davidian and Giltinan, 1995) 

which is assumed normally distributed with zero 

expectation and a positive-definite variance-

covariance structure Rijk, generally expressed as a  

function of the parameter vector δ (Meng and 

Huang, 2009): 

 

 
 

Moreover, ϕijk can be expressed as: 

 

                (2) 

 

,  

 

where, λ is the p×1 vector of fixed population 

parameters (where p is the number of fixed parameters 

in the model), µi and µij are the q1×1 and q2×1 vectors of 

random effects associated with the first level and the 

second level, respectively (where q1 and q2 are the 

numbers of random parameters of two levels in the 

model), which are assumed to be normal (or Gaussian) 

with a mean of 0 and have the variance-covariance 

matrixes ψi and ψij, which are the q1×q1 and q2×q2 

variance-covariance matrixes of random effects in two 

levels, respectively. Aijk, Bi,jk and Bijk are design 

matrices of size r×p, r×q1 and r×q2 for the fixed and 

random effects of two levels specific to each sampling 

unit, respectively. 

 

Height-diameter equations: Several functions to 

model the relationship between dbh and h of the trees in 

a stand are available (Curtis, 1967; Fang and Bailey, 

1998; Huang et al., 2000, 1992). In this study, 23 

functions (Table 2) were compared to determine which 

showed the best predictive ability and fit to the height-

diameter data (Huang et al., 2000). All functions tested 

have two or three parameters and are nonlinear. 

Using the R nls function to fit 23 above-mentioned 

equations by ONLS regression. Different initial values 

for the parameters were used to ensure that a global 

minimum was achieved. The best function was selected 

by applying three statistical criteria, which are Bias, 

Root Mean Square Error (RMSE) and the adjusted 

coefficient of determination (����
� ) (Zhang et al., 2011). 

The calculation formulas of these statistics were listed 

as follow: 

 

( )
1 1 1

ˆi ijM M n

ijk ijki j k

ij

y y
Bias

n

= = =
−

=
∑ ∑ ∑

                       (3) 

 

( )2

1 1 1

ˆ
i ijM M n ijk ijk

i j k
ij

y y
RMSE

n r= = =

−
=
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                  (4) 
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( )

2

1 1 1

2

1 1 1

2
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ˆ

1 1

i ij

i ij

M M n ijk ijk

i j k
ij

ij M M n

ijki j k

y y

n r

y
R n

y

= = =

= = =

 −
 
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= − −  
− 

 
  

∑ ∑ ∑

∑ ∑ ∑
    (5) 

 

where,  

yijk and ����	 
= The height measurements and 

predictions, respectively 

�
  = The average of measurements 

( )~ N 0,ijk ijkRε

,ijk ijk i jk i ijk ijA B Bφ λ µ µ= + +

( )~ N 0,i iµ ψ ( )~ N 0,ij ijµ ψ
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Mixed parameter ascertainment: Which parameters 

in the model should be considered as random effects 

and which can be treated as purely fixed effects is the 

key question to fit the NLME models. Pinheiro and 

Bates (2000) suggested that it could start with a model 

with random effects for all parameters and then 

examine the fitted object to decide which, if any, of the 

random effects can be eliminated from the model by 

Akaike’s information criterion (Akaike, 1974), 

Bayesian information criterion (Weiss, 2005) and -2 

logarithm likelihood (-2LL). An appropriate variance 

function structure for NLME models were determined 

by Likelihood Ratio Test (LRT) (Fang and Bailey, 

2001; Pinheiro and Bates, 2000). All NLME models 

presented in this research were calibrated using the 

NLME function in the R statistical software (Ihaka and 

Gentleman, 2004; Pinheiro et al., 2005). 

 

Determining the structure of variance-covariance: 

The eigenvalues of variance-covariance matrixes ψi  

and ψij are strictly positive (Pinheiro and Bates, 2000). 

A hypothetical 3×3 variance-covariance matrix is 

shown as follow (Calama and Montero, 2004; Fu et al., 

2013): 

 

 
 

where, ��
�, �


� and ��
�  are the variance for the random 

effects u, v and w, respectively, σuv = σvu is the 

covariance among random effects u and v, σuw = σwu 
 is 

the covariance among random effects u and w, σvw = σwv 
is the covariance among random effects v and w. 

 

Determining the structure of Rijk: To account for 

within-plot heteroskedasticity in Rijk, which includes 

weighting factors (Davidian and Giltinan, 1995; Meng 

and Huang, 2009), the approach is given by Calama and 

Montero (2004) and Crecente-Campo et al. (2010a):  

 

                                              (6) 

 

where, σ
2
 is a scaling factor for the error dispersion 

(Grégoire et al., 1995), Gij is a nij×nij diagonal matrix 

within-plot error heteroscedasticity variances and Iij is 

an nij×nij matrix showing the within-plot autocorrelation 

structure of error. In our case, because no correlation 

patterns emerged between measurements from the same 

plot, Iij reduced to a nij×nij identity matrix. 

In this study, the variance heterogeneity was 

removed by two variance functions: the power function 

and the exponential function (Pinheiro and Bates, 

2000): 

                            
(7) 

 

                                     (8) 

 

where, δ is estimated parameter. 

 

Parameter estimation: The parameters in equation 

were estimated using the R NLME function (Lindstrom 

and Bates, 1990; Pinheiro and Bates, 2000). 

In this study, the random effects parameters can be 

calculated with the validation data of height and 

diameter, by the Empirical Best Linear Unbiased 

Predictors (EBLUPs) (Vonesh and Chinchilli, 1997): 

 

                        (9) 

 

where,  

D  =  The estimated variance-covariance matrix for the 

random-effects ����	   

Rijk  =  The estimated variance-covariance matrix for the 

error term 

Zijk  =  The estimated partial derivatives matrix with 

respect to random effects parameters 

 

RESULTS 

 

Function selection: The results of 23 height-diameter 

functions’ performance criteria show that the Eq. (4) 

has slightly better predictive ability than the others for 

two parameters and the Eq. (10) is the best for three 

parameters, which is better than the Eq. (4) and 

significantly different from it (F = 113.32, p<0.001). 

Therefore, the Eq. (10) was selected as the basic model 

for constructing the height-diameter relationship: 

 

                     (10) 

 

Constructing NLME models: Different combinations 

of random effects for Eq. (10) were compared by AIC, 

BIC, -2LL and LRT statistics and the results showed in 

Table 3. The models of Eq. (11) and (13), incorporating 

sites effects on ϕ1 and ϕ2, plots effects and the nested 

effects of sites and plots on ϕ1, ϕ2 and ϕ3, respectively, 

yielded the smallest AIC, BIC and -2LL: 

 

                         (11) 

 

             (12) 

2
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Table 3: Performance criteria of NLME models for combinations of random-effects 

Effects Mixed parameters AIC BIC -2LL LRT p value 

Sites effects ϕ1 8374.1 8401.9 8364.1   
 ϕ1, ϕ2 8134.6 8173.4 8120.6 243.56 <0.0001
 ϕ1, ϕ2, ϕ3 8138.7 8194.2 8118.7 1.82 0.6117 
Plots effects ϕ1 7454.4 7482.1 7444.4   
 ϕ1, ϕ2 7320.3 7359.2 7306.3 138.05 <0.0001
 ϕ1, ϕ2, ϕ3 7309.9 7365.4 7289.9 16.43 0.0009 
Nested effects of sites and plots ϕ1 7449.4 7482.7 7437.4   
 ϕ1, ϕ2 7317.0 7372.5 7297.0 140.46 <0.0001
 ϕ1, ϕ2, ϕ3 7308.2 7397.0 7276.2 20.78 0.0020 

 

Table 4: Performance criteria of NLME models with heteroscedasticity structure 

Effect 
Heteroscedasticity 
structure AIC BIC -2LL LRT p value 

Sites effects None 8134.6 8173.4 8120.6   
 Power 7915.8 7960.2 7899.8 218.95 <0.0001
 Exponent 7930.0 7974.4 7914.0 116.56 <0.0001
Plots effects None 7309.9 7365.4 7289.9   
 Power 6844.7 6905.7 6822.7 467.22 <0.0001
 Exponent 6872.3 6933.3 6850.3 340.10 <0.0001
Nested effects of sites and plots None 7308.2 7397.0 7276.2   
 Power 6840.8 6935.1 6806.8 469.43 <0.0001
 Exponent 6868.5 6962.8 6834.5 334.60 <0.0001

 

       

(13) 

 

NLME models with heteroscedasticity: Table 4 lists 

the performance criteria of NLME models with 

different heteroscedasticity structure. Thus, the final 

models of plots effects, trees effects and the nested two 

effects are: 

 

                                            (14) 

 

                                             (15) 

 

                                             (16) 

 

Parameter estimates: We can conclude the NLME h-d 

models with sites effects, plots effects and nested two 

effects of sites and plots for Chinese fir in southeast 

China as follow: 

 

Sites effects: 

 

        (17) 

where, 

 

  

 

 

 
 

Plots effects: 

 

         (18) 

 

where,  

 

 

 

  

 
 

 

Nested effects of sites and plots: 

 

   (19) 

 

where, 
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Table 5: Evaluation indices of each model 

Model 

Fitting data 
------------------------------------------------------------------------------ 

Validation data 
---------------------------------------------------------------- 

Bias RMSE R���
�  Bias RMSE R���

�  

Eq. (10) 0.0208 2.8109 0.7206 0.1900 2.1982 0.8765 
Eq. (17) 0.0026 2.0305 0.8542 0.1342 1.9122 0.9072 
Eq. (18) 0.0050 1.5765 0.9121 0.0156 1.0177 0.9735 
Eq. (19) 0.0047 1.5760 0.9123 0.0016 0.9798 0.9749 

 

  
 

  
 

Fig. 2: Distribution of residuals of Eq. (10) and (17)-(19) 

 

  
 

  
 

Fig. 3: Relationships between the fitted values and the observed values of Eq. (10) and (17)-(19) 

 

 

 

Model prediction: The results of the three prediction 

statistics of Eq. (10), (17) and (19) were showed in 

Table 5. The prediction accuracy of the nested two 

levels NLME model Eq. (19) was higher than the others 

for both fitting and validation data. Figure 2 shows the 
residual  distributions of Eq. (10), (17) and (19) and 
Fig. 3 shows relationships between the fitted values and 
the observed values of these equations.  

Based on the above analysis, we can conclude that 

Eq. (19), incorporating the nested effects of sites and 

plots, displays sufficiently high predictive power to 

( ) 1.7769
var power 0.1624ijk ijkdε =
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constitute a final model for predicting the height-

diameter relationship of Chinese fir trees in a pure 

plantation in the study area.  

 

CONCLUSION 

 

Twenty three height-diameter equations were 

considered in this study for describing the height-

diameter relationship for Chinese fir in pure plantation 

stands in Fujian province, southeast China. Then the 

best function Eq. (10) as the basic model was 

determined by Bias, RMSE and ����
� . The ONLS 

regression approach is commonly used to build the h-d 

models, but to a certain extent, there is a restriction of 

this method because of its assumption of independence 

and ignorance of heteroscedastiity. In this study, one 

level (site or plot) and nested two levels (plot nested 

within site) NLME models with variance function 

approach were used to estimate the height-diameter 

relationship based on the basic model because of the 

hierarchical structure of measurements data. We used 

the power function and the exponential function as the 

variance functions to eliminate the heteroscedasticity. 

The random effects parameters can be calculated with 

the measurements of the height and diameter (data not 

used in the fitting of the model), by EBLUPs Eq. (9). 

The results showed that the nested two levels NLME 

models Eq. (19) provided better model fitting and more 

precise estimations than the others Eq. (10), (17) and 

(18) (Table 5, Fig. 2 and 3). Therefore, NLME models 

could improve the fitting performance in modeling 

height-diameter relationship for Chinese fir, which is 

important for owners and managers of plantations to 

make appropriate sustainable management plans for 

different sites, even plots. 
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