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Abstract: High performance multiplier designs are the prime need of emerging digital filtering operations. This 
research study presents a novel architecture of reduced area computation sharing multiplier for Finite Impulse 
Response (FIR) filter. The same architecture is extended for the floating point applications. The chosen pre-
computer alphabet set is the most prominent feature of this architecture. The proposed integer based Computation 
Sharing High speed Multiplier (CSHM) efficiently computes the vector scalar product based on the distributed 
arithmetic. The proposed CSHM (8*8) shows 29.81% of area and 46% of power optimization over existing CSHM 
style. The experimental results for Look up Table (LUT) based implementation shows 57% improvement than the 
LUT required to implement a existing 8*8 CSHM based FIR filter. The proposed design style is also extended for 
Floating Point (FP) multiplication. The 4 tap Floating Point Finite Impulse Response (FP FIR) filter is designed in 
Xilinx environment (No. of LUT’s 5919) and TSMC 180 nm technology (power 29.5 mW and area 212636.79 um

2
) 

using proposed CSHM. The performance results get improves in terms of power and area over conventional design 
style. 
 
Keywords: Computation Sharing High speed Multiplier (CSHM), Finite Impulse Response (FIR), Floating Point 

Finite Impulse Response (FP FIR), Look up Table (LUT) 

 
INTRODUCTION 

 
Due to the rapid growth in multimedia applications 

and popularity of the portable battery-powered systems, 
there is a high demand of high performance and low 
power signal processing devices. Since many telephony 
and data communications applications have been 
moving to digital, the need for digital filtering methods 
continues to grow. In digital VLSI systems, filtering 
operation is widely employed in various applications 
such as video processing, image processing and 
wireless communication. In the filtering operation 
multiplier unit is an essential and extensively used 
element. Complexity reduction of multiplier unit 
present in FIR filter implementations has also been of 
particular interest since lower computational 
complexity leads to low-power as well as high 
performance design. Multiplication operation is nothing 
but generation and addition of partial products. 
Generation of partial products in the multiplier 
consumes huge power as well as area.  

Many research proposals have been devoted to 
high speed, low power, less area multipliers for various 
applications. Previously Booth’s multiplier (Alan et al., 
2000) Wallace tree multiplier (Kernhof et al., 1989), 

Array multiplier (Mark, 1989) for filtering application 
explored the low power and area efficient design. 
FPGA implementation of such design consumes large 
LUT area. Also computation performed has large power 
consumption. Some algorithmic techniques like CSD 
format (Mamatha and Ramchandram, 2012) is used to 
reduce the addition operation in multiplication, which 
benefits in less arithmetic operations but again a 
number system conversion itself increases the area. The 
reconfigurable multiplier design based on the 
reordering of partial product (Wu et al., 1998) and row-
bypassing technique (Kuo and Chou, 2010) is proposed 
to reduce the switching power. But row bypassing 
technique is useful only when numbers of zeros are 
more in multiplicand. A Computation Sharing 
Multiplier (CSHM) (Jongsun et al., 2004) architecture 
has been proposed in which common computations 
(alphabets) are identified and all the partial products 
been achieved only by shift and add method. Also 
CSHM overcomes the drawback of area and power and 
applicable for applications with programmable filter 
coefficients. Since, redundant computations are 
removed; CSHM achieves high-performance in filtering 
operation  by  reusing  the  optimal  pre-computations  
and   low-power   consumption.   In   addition   to   
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Fig. 1: Block diagram of existing CSHM 

 

signal  processing  applications,  CSHM  can  also  be  

used in  data  compression/decompression  for  testing 

and  VLSI  testing  applications.  In  the  literature  

(Jongsun et al., 2004; Sravanthi et al., 2012) CSHM is 

used only in fixed-point FIR filter implementation. 

But existing CSHM uses fixed-size look-up rule to 

select the alphabet. According to this rule, if the 

alphabet length is increases then the number of alphabet 

set also increases which increases the amount of 

computation in pre-computer unit. This leads to large 

area and power consumption. Another disadvantage of 

existing CSHM is that it compulsorily requires 

SHIFTER and ISHIFTER which occupies more area in 

LUT based designs. 

This drawback is wisely overcome in proposed 

CSHM. The proposed CSHM architecture, consist of 

pre-computer having constant alphabet set count 

irrespective of length of the coefficient, input and 

number of bits to represent the coefficient. The chosen 

alphabet set is easy and efficient to compute as compare 

to existing one. In the existing design select unit consist 

of 8:1 MUX, SHIFTER and ISHIFTER which is used 

to generate the partial products. In the proposed design 

the same operation is been implemented by using two 

4:1 MUX and an adder. The proposed architecture is 

extended for signed number also.  

This proposed work is intended to give less area 

and low power implementation of FIR filter. So that 

this novel proposed technique can be used in many DSP 

applications. 

 

Existing CSHM: Computation sharing scheme is 

highly efficient where common computations are 

frequently performed. In signal processing, FIR 

filtering can be expressed as multiplication of vector by 

scalars C.X. Expression (1) shows representation of 

FIR filter using difference equation form: 

 

���� = 

�0���� + �1��� − 1� + ⋯ + �	��� − 	�        (1) 

 

Distributed arithmetic avails the easy 

implementation method of above expression. The 

existing computation sharing multiplier (Jongsun et al., 

2004) shown in Fig. 1 which presents parallel 

multiplication of input signal X with all coefficients. In 

this algorithm, the multiplication operation is 

significantly simplified as add and shift operations. 

Complexity reduction in the vector scalar product is 

been achieved by using the concept of computation 

sharing. 

In the vector scaling operation, we can carefully 

select a set of small bit sequence so that the same 

multiplication result can be obtained by only add and 

shift operation. For example, C = 01011110 has to 

multiply with input X. The multiplication of X.C is 

obtained by (0101.X) <<4+ (0111.X) <<1. If both 

(0101).X and (0111).X are available, then the entire 

multiplication process is reduced to few addition and 

shift operations. The chosen basic bit sequences are 

called as alphabets. An alphabet set is a set of alphabets 

that spans all the coefficients in vector C. 

Since alphabets are small bit sequence the 

multiplication of alphabets with operand X can be done 

without seriously compromising the performance. In 

the existing computation sharing multiplier design fixed 

size look up rules been used. In the fixed sized lookup 

rules multiplication, the maximum alphabet length L is
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fixed. Let the coefficient length is W then it is been 
divided into W/L parts, each part consist of L bits. W/L 
should be an integer. Once L is determined, an alphabet 
set should be able to express any L bit number by one 
of its alphabet multiplied by the power of two. In 
existing algorithm, the used alphabet set consist of odd 
numbers less than or equal to 2

L
 -1. 

As shown in Fig. 1 8*8 CSHM structure based on 
computation sharing scheme, the pre-computer 
performs the computations αk.X, for k = 0, 1, 2, …7. 
Where αk is the alphabet set. As a result, the outputs of 
pre-computer are 1X, 3X, 5X, 7X, 9X, 11X, 13X and 
15X for L = 4. To find the correct alphabet shifter 
performs the right shift operation until it encounters 1 
from LSB side and sends an appropriate select signal to 
8:1 MUX along with the exact shift signal to 
ISHIFTER. 

The 8:1 MUXs select the correct alphabet among 

the eight values received from the pre-computed value 

αk.X, for k = 0, 1, 2…7. ISHIFTER simply inverse the 

operation performed by SHIFTER. AND gates are used 

to deal with zero coefficients. SHIFTER-ISHIFTER-

AND gate forms the select unit. The upper select unit 

generates the multiplication of 4 LSB bits of coefficient 

with input X. The lower select unit produces the 

product of 4 MSB bits with input X. A shift of 4 bits is 

performed when those two values are fed to the final 

adder. A simple adder produces the final result. 

Let  us  consider  an  example,  X = 00100011  and  

C = 01100011. The coefficient is divided into two parts 

consisting of 4 bits. 0011 is fed to SHIFTER of upper 

select unit and 0110 to that lower one. In the upper 

select unit, shifter shifts 0011 to the right until it 

encounters 1 in the LSB and sends the select signal 001 

to the MUX which chooses 3X among pre-computer 

output. Shifter also sends (00) to ISHIFTER so final 

result of the first select unit is 3X. 

For second select unit, the input will be 0110. 

MUX select line is 001 and shifted signal value to 

ISHIFTER is 01. The MUX output is 3X which is left 

shifted once by ISHIFTER.  

When 0011X and 0110 X reached to the adder, 

0110X should be shifted 4 times to the left because it is 

the multiplication of 4 MSB bits.  

For 16*16 multiplication, if L = 4, 4 select units 

required to compute the operation. Considering VLSI 

implementation of this structure, select unit logic is not 

area efficient.  

 

PROPOSED CSHM 

 
The proposed computation sharing multiplier 

architecture is based on reduced alphabet set and 

grouping the bits of coefficient to drives the select 

signals of MUX. Figure 2 shows proposed CSHM. It 

consists of pre-computer, select unit and an adder. Pre-

computer produces multiplication of alphabets with 

input X. Two distinct alphabet set’s are formed namely 

set 1 and 2. Set 1 consist of {1X, 2X and 3X} and set 2 

consist of {4X, 8X and 12X}. Compared to existing 

CSHM pre-computer alphabet count, this pre-computer 

has less count and also it is constant. Hence it computes 

multiplication result along with positive area overheads. 

The main advantage of select unit is select signals for 

MUX are obtained without any lookup rules.  

With this idea, 8*8 and 16*16 computation sharing 

multiplier has been implemented. Figure 2 shows 

modified 8*8 computation sharing multiplier 

architecture for unsigned integers. Pre-computer 

 

 
 

Fig. 2: Block diagram of proposed CSHM 
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Fig. 3: IEEE 754 single precision format 

 
alphabet sets are of only 6 significant values and easy 
and efficient to compute. It is implemented by shift and 
add logic only 2 addition operations are needed in pre-
computer block. The coefficient of length W is divided 
into groups of 2 bits {b0b1, b2b3,} and the number of 
required MUX’s is W/2. Each coefficient group will act 
as a select line to the 4:1 Mux’s. All odd 4:1 MUX’s 
has input signal as (0, Set 1 alphabets). All even 4:1 
MUX’s has input signal as (0, Set 2 alphabets). In each 
select unit’s output’s of MUX’s are added as shown in 
Fig. 2. Independent select signals benefited in parallel 
operations. 

If coefficient is C = 011000112 = 9910, starting 
from LSB of coefficient, 11 will be the select line for 
MUX 1, 00 for MUX 2 and so on. Hence values 
selected by MUX’s are 3X, 0, 2X, 4X. The final result 
Z = X*C is obtained by the following expression:  
 


 = �3� + 0� + �4 ��� �����ℎ����2� + 4���   (2) 
 


 = �3� + 96��                 (3) 
 


 = 99 ∗ �                                                           (4) 
 

For the final multiplication result, the addition of 
outputs of MUX 3 and MUX 4 needs left shift of 4 bits 
because it is the multiplication of 4 most significant bits 
of coefficients. If 3X, 2X, 4X are available, the 
multiplication result will be of few shifts and add 
operation. The select unit of proposed CSHM is highly 
area and power efficient compared to existing design.  

The same idea can be expanded for 16*16 
multiplication. A 16*16 unsigned integer CSHM has 
been implemented with the same pre-computer alphabet 
sets. The critical path has addition operation which 
incurs the largest delay. But compared to select unit of 
existing CSHM, proposed design has less area overhead 
in LUT based designs. 
 
Floating point CSHM: The practical value in digital 
application may be a fraction or an unsigned number. If 
CSHM indulge same gains for signed number then its 
application area can be wider. One of the formats used 
for signed number representation is IEEE-754 single 
precision format. To represent a number in floating 
point representation, a double word is divided into 3 
fields {S, E, M}, representing as follows: 1 bit for the 
Sign (S), 8 bits for the Exponent (E) and 23 bits for the 
Mantissa (M). Figure 3 shows the format, since the 
exponent field is 8 bits, it can be used to represent 
exponents between -128 and 127. The significant field 
can store the first 23 bits of the binary representation of 
m, namely b0, b1, b2, b3…… b23. But for the 

normalized number the mantissa is always 1.m (b0 = 1). 
In single precision representation 1 is implicit. Hence 
only 23 bits (b1, b2, b3…… b23) are stored in single 
precision format. 

Figure 4 shows algorithm and expression for 
floating point multiplier. To get the multiplication 
result, sign bits are XORed and exponent is obtained by 
simple addition. For biased exponent 127 has to be 
subtracted from the addition. Also for final exponent, 
overflow and underflow has to be checked. The 
mantissa bits are multiplied and rounding is done with 
normalization for the final 23 bits. Here 24×24 
multiplier is required and hence proposed CSHM suits 
very well.  

If F0 = ±M0×2
E0

 and F1 = ±M1×2
E1

, Then the 
multiplication of F0 with F1 is obtained by the following 
expression: 
 

� ∗  �! =  ± # ∗ #! ∗  2$ %$!               (5) 
 

The implementation of IEEE 754 floating point 
multiplier using 24*24 CSHM is presented in this 
study. The 24×24 significant multiplication is the main 
block in which redundant computations take place 
frequently and is the main obstacle in achieving high-
performance and low-power consumption in many DSP 
applications. The redundant computations can be 
reduced by identifying common computations and 
sharing them among different arithmetic units in the 
application. Figure 5 shows Floating Point multiplier 
using proposed CSHM. It consists of the following 
block. 
 
Unpack: Sign bit, exponent bit and mantissa bit are 
extracted from the packed IEEE 754 floating point 
number. 

 
XOR: Sign bits are XORed for the final result. 

 
Exponent adder: Exponents are added and 127 is 
subtracted for the bias result. 

 
CSHM multiplier: It is basically 24×24 CSHM. Two 
mantissa’s are multiplied by computation sharing style 
and final result will be of 48 bits. For packing the result 
in IEEE format, the lower 24 bits is been truncated i.e., 
rounding number to 24 bits.  

 
Rounding: Here round to nearest technique is used 
(Sivanantham et al., 2013). The value ‘1’ is added to 
the LSB position of the bits to be retained if there is a 
‘1’ in the MSB position of  the  bits  to  be  removed.  
Thus 0.b-1b-2b-31 is rounded to 0.b-1b-2b-3 +0.001 and 
0.b-1b-2b-30  is  rounded  to  0.b-1b-2b-3.  When  the  bits  
to  be removed are 10…0, a tie occurs. In  this  case  
0.b-1b-20100 is truncated to the value 0.b-1b-20 and the 
value 0.b-1b-21100 is truncated to 0.b-1b-21+0.001. This 
is unbiased rounding technique, because the error range 
is -½ to +½ in the LSB position of the retained bits. 
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Fig. 4: Flowchart of floating point multiplication 

 

 
 

Fig. 5: Proposed CSHM based floating point multiplier architecture 

 

Normalization:  After  24×24  multiplication  the   48   

bit  result  has  to  be  normalized  such  that   there   

will  be at least one non zero digit left to the binary 

point.  



 

 

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015 

 

821 

 
 

Fig. 6: Transposed form of FIR filter 

 

 
 

Fig. 7: FP_FIR filter using FP_CSHM 

 

The final result is packed for standard IEEE 754 

single precision format. 

 

FIR filter design using proposed CSHM: The input-

output relationship of Linear Time Invariant (LTI) FIR 

filter can be described as: 

 

���� =  & C(. X�n − i� -
./                 (6) 

 

where, N represents the order of FIR filter, Ci is the 

filter coefficients and X (n-i) denotes the data sample at 

time instance n. Figure 6 shows a transposed Direct 

Form (DF) implementation of an FIR filter. The 

multipliers are replaced by proposed Computation 

Sharing Multipliers (CSHM). The computations αk. X 

(where k = 0, 1, 2, ... 5) are performed only once for all 

k’s and all filter taps and these values are shared by all 

the  select  and  shift  units  for  generating  Ci.X  

(where  i = 0, 1, 2, 3). The input X (n) is multiplied by 

all the coefficients C0 C1 C2…. CM-1 simultaneously and 

are added for final FIR response. Expressing the 

filtering operation in terms of a vector scaling operation 

allows opportunity to share computations between 

multiplication operations.  

As the computer world emerging with accuracy 

and precise response, the signal processing techniques 

must support such a complex system. Floating point 

system based FIR filter provide high reliability in 

critical and security based application. The 

implementation of the transposed direct form floating 

point FIR filter is presented in this section on which 

multiplier is replaced with proposed FP_CSHM.  

Figure 7 shows the proposed structure of the FIR 

filter using floating point CSHM. The floating point 
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adder is also implemented to add all products. Final 

result of filter is represented in IEEE single precision 

format.  

 

RESULTS AND DISCUSSION 

 

The implementation result of existing CSHM, 

proposed CSHM (both for unsigned integers and IEEE 

single precision format), FIR filter (4 taps) design using 

existing CSHM and proposed CSHM in the 

environment of both Xilinx ISE 14.3 and Cadence
® 

RC 

compiler is discussed and relevant comparison 

statement is also presented in this section. 

Table 1 shows the comparison result of existing 

CSHM and proposed CSHM in the Xilinx 

Environment. Proposed CSHM shows 57% reduction 

(8*8) and 41% reduction (16*16) in the Look up table 

requirement. In an existing CSHM fixed size look up 

rule is used and which chooses the number of alphabets 

in the alphabet set. With the L = 2, number of alphabets 

needed in the pre-computer unit is 2 and number of 

select unit required is 4 and 8 for 8*8 and 16*16 

multiplication respectively. With the L = 4 number of 

alphabets needed in the pre-computer unit is 8 and 

number of select unit required is 2 and 4 for 8*8 and 

16*16 multiplication respectively. So increase In L 

causes more multiplication requirement in the pre-

computer unit which automatically increases the 

computational complexity. Though there is a reduction 

in a number of select unit requirement compared to 

previous disadvantage, advantage we gain due to 

reduction in a select unit is less. But in proposed 

CSHM, for 8*8 and 16*16 multiplication always 

requires 6 constant alphabet sets in the pre-computer 

unit and 2 and 4 select unit’s requirement respectively. 

Though the number of bits to multiply gets increases 

also always pre-computer entries remains same and 

even better result can be achieved by using proposed 

CSHM technique. For example, With L = 5, Existing 

CSHM requires 16 entries in the pre-computer unit and 

5 select unit’s for 20*20 multiplication. But proposed 

CSHM requires only 6 entries in the pre-computer unit 

and 5 select units for 20*20 multiplication. The timing 

result shows no big difference in the both the 

architecture. Since all the select units are working in 

parallel manner in the both the architecture, the 

expected final result also almost at the same time. With 

the small architecture modification, proposed CSHM is 

modified to work for signed number also. 

Table 2 refers the comparison result of existing and 

modified CSHM in the cadence
®
 RC compiler 

environment. Due to the reduction in the number of 

entries in the pre-computer unit of proposed CSHM, 

there is a reduction in the hardware requirement. For 

example, if we take 8*8 CSHM, there is a 46% area and 

power reduction is achieved compared to existing 

CSHM  style. As  mentioned  above if number of bits to 

Table 1: Xilinx analysis for CSHM multiplier 

8*8 CSHM 

16*16 CSHM 

FP_CSHM 

Existing CSHM 

design style 

Proposed CSHM 

design style 

Slices 118 48 

 370 208 

 860 629 

No. of LUTs 222 94 

 702 410 

 1617 1211 

Timing (nsec) 20.20 14.93 

 20.16 17.94 

 27.65 24.67 

 

Table 2: CSHM results in CADENCE® RC compiler 

8*8 CSHM 

16*16 CSHM 

FP_CSHM 

Existing CSHM  

design style 

Proposed CSHM 

design style 

No. of cell 439  207  

 890  652  

 2094  1331  

Power (mW) 0.533   0.288   

 2.440   1.650   

 5.800   4.900   

Area (um2) 8528.890   4580.450   

 24828.250   17716   

 53538.400  43047.900  

Timing (nsec) 6.397  6.050   

 11.714   12   

 21.310   20.800 

 

Table 3: FIR filter implementation results (implemented in 

CADENCE® RC compiler) 

8*8 FIR 

16*16 FIR  

FP_FIR 

Existing CSHM  

based style 

Proposed CSHM 

based style 

No. of cell 1288  904  

 3211  2841  

 10265 8143  

Power (mW) 2.098  1.299   

 9.700  7.250   

 29.880 29.500 

Area (um2) 30093.900  24854.027   

 84231.100   68184.500   

 229035.940 212636.790 

Timing (nsec) 9  8.151   

 14.381   14.503   

 36   35.270 

 

multiply get increases too, proposed design reduces the 

hardware requirement still in better way. 

The FIR filter implementation is done using 

existing and proposed CSHM in the both the 

environment. Multiplier is an essential element in FIR 

filtering operation. So the FIR filter has been chosen as 

an application to implement a proposed CSHM. 

Figure 8 shows comparison result of Slices, LUT 

requirement to implement a 4 tap FIR filter design 

using existing and proposed CSHM. From Fig. 8 it is 

clearly visible that proposed technique requires less 

number of slices and LUT than the existing technique 

due to its constant alphabet sets. 

Table 3 shows comparison result obtained for a 4 

tap filter design with 8*8, 16*16 and IEEE single 

precision  format  multiplier  unit.  Even  for 4 tap itself  



 

 

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015 

 

823 

 
 

Fig. 8: FIR filter implementation results (Xilinx ISE 14.1) 

 
proposed CSHM based FIR Filter design gave better 
result in terms of area as well as power (7% reduction 
for an FP_CSHM based FIR filter design) in the both 
the environment. The FIR Filter is implemented in RC 
compiler tool of cadence

®
 design systems shows area 

and power requirement of ASIC implementation. 
Real time application needs FIR filter with more 

taps in order to get the smooth amplitude and phase 
plot. So if the number of taps increases, it requires more 
multipliers unit then designing the FIR Filter with 
proposed CSHM will give significant reduction in 
terms of area without compromising the delay. 
 

CONCLUSION 
 

In this research study, successful optimization of 

existing computation sharing high speed multiplier is 

obtained by constant pre-computer alphabet set and the 

same work is extended for floating point multiplication 

also. The FIR filter implementation using proposed 

CSHM impacts positively on the area and power. The 

timing results shows in both the architecture requires 

very less delay to get the final output. The proposed 

floating point CSHM based FIR filter implementation 

also holds better results in terms of area, power 

compared to existing floating  point  CSHM  based  FIR 

filter implementation. So from all of the above results it 

is clear that the proposed CSHM suits well for filtering 

as well as processor applications. 
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