
Research Journal of Applied Sciences, Engineering and Technology 10(7): 816-823, 2015

DOI:10.19026/rjaset.10.2435

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: February 22, 2015 Accepted: March 12, 2015 Published: July 10, 2015

Corresponding Author: S. Umadevi, School of Electronics Engineering, VIT University, Chennai, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

816

Research Article

A Novel Less Area Computation Sharing High Speed Multiplier Architecture for
FIR Filter Design

1
S.

Umadevi,

1
T. Vigneswaran,

1
S. Kadam Vinay and

2
V. Seerengasamy

1
School of Electronics Engineering, VIT University, Chennai, India

2
Deparment of Mathematics, PSNA College of Engineering and Technology, Anna University,

Dindigul, India

Abstract: High performance multiplier designs are the prime need of emerging digital filtering operations. This
research study presents a novel architecture of reduced area computation sharing multiplier for Finite Impulse
Response (FIR) filter. The same architecture is extended for the floating point applications. The chosen pre-
computer alphabet set is the most prominent feature of this architecture. The proposed integer based Computation
Sharing High speed Multiplier (CSHM) efficiently computes the vector scalar product based on the distributed
arithmetic. The proposed CSHM (8*8) shows 29.81% of area and 46% of power optimization over existing CSHM
style. The experimental results for Look up Table (LUT) based implementation shows 57% improvement than the
LUT required to implement a existing 8*8 CSHM based FIR filter. The proposed design style is also extended for
Floating Point (FP) multiplication. The 4 tap Floating Point Finite Impulse Response (FP FIR) filter is designed in
Xilinx environment (No. of LUT’s 5919) and TSMC 180 nm technology (power 29.5 mW and area 212636.79 um

2
)

using proposed CSHM. The performance results get improves in terms of power and area over conventional design
style.

Keywords: Computation Sharing High speed Multiplier (CSHM), Finite Impulse Response (FIR), Floating Point

Finite Impulse Response (FP FIR), Look up Table (LUT)

INTRODUCTION

Due to the rapid growth in multimedia applications

and popularity of the portable battery-powered systems,
there is a high demand of high performance and low
power signal processing devices. Since many telephony
and data communications applications have been
moving to digital, the need for digital filtering methods
continues to grow. In digital VLSI systems, filtering
operation is widely employed in various applications
such as video processing, image processing and
wireless communication. In the filtering operation
multiplier unit is an essential and extensively used
element. Complexity reduction of multiplier unit
present in FIR filter implementations has also been of
particular interest since lower computational
complexity leads to low-power as well as high
performance design. Multiplication operation is nothing
but generation and addition of partial products.
Generation of partial products in the multiplier
consumes huge power as well as area.

Many research proposals have been devoted to
high speed, low power, less area multipliers for various
applications. Previously Booth’s multiplier (Alan et al.,
2000) Wallace tree multiplier (Kernhof et al., 1989),

Array multiplier (Mark, 1989) for filtering application
explored the low power and area efficient design.
FPGA implementation of such design consumes large
LUT area. Also computation performed has large power
consumption. Some algorithmic techniques like CSD
format (Mamatha and Ramchandram, 2012) is used to
reduce the addition operation in multiplication, which
benefits in less arithmetic operations but again a
number system conversion itself increases the area. The
reconfigurable multiplier design based on the
reordering of partial product (Wu et al., 1998) and row-
bypassing technique (Kuo and Chou, 2010) is proposed
to reduce the switching power. But row bypassing
technique is useful only when numbers of zeros are
more in multiplicand. A Computation Sharing
Multiplier (CSHM) (Jongsun et al., 2004) architecture
has been proposed in which common computations
(alphabets) are identified and all the partial products
been achieved only by shift and add method. Also
CSHM overcomes the drawback of area and power and
applicable for applications with programmable filter
coefficients. Since, redundant computations are
removed; CSHM achieves high-performance in filtering
operation by reusing the optimal pre-computations
and low-power consumption. In addition to

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015

817

Fig. 1: Block diagram of existing CSHM

signal processing applications, CSHM can also be

used in data compression/decompression for testing

and VLSI testing applications. In the literature

(Jongsun et al., 2004; Sravanthi et al., 2012) CSHM is

used only in fixed-point FIR filter implementation.

But existing CSHM uses fixed-size look-up rule to

select the alphabet. According to this rule, if the

alphabet length is increases then the number of alphabet

set also increases which increases the amount of

computation in pre-computer unit. This leads to large

area and power consumption. Another disadvantage of

existing CSHM is that it compulsorily requires

SHIFTER and ISHIFTER which occupies more area in

LUT based designs.

This drawback is wisely overcome in proposed

CSHM. The proposed CSHM architecture, consist of

pre-computer having constant alphabet set count

irrespective of length of the coefficient, input and

number of bits to represent the coefficient. The chosen

alphabet set is easy and efficient to compute as compare

to existing one. In the existing design select unit consist

of 8:1 MUX, SHIFTER and ISHIFTER which is used

to generate the partial products. In the proposed design

the same operation is been implemented by using two

4:1 MUX and an adder. The proposed architecture is

extended for signed number also.

This proposed work is intended to give less area

and low power implementation of FIR filter. So that

this novel proposed technique can be used in many DSP

applications.

Existing CSHM: Computation sharing scheme is

highly efficient where common computations are

frequently performed. In signal processing, FIR

filtering can be expressed as multiplication of vector by

scalars C.X. Expression (1) shows representation of

FIR filter using difference equation form:

���� =

�0���� + �1��� − 1� + ⋯ + �	��� − 	� (1)

Distributed arithmetic avails the easy

implementation method of above expression. The

existing computation sharing multiplier (Jongsun et al.,

2004) shown in Fig. 1 which presents parallel

multiplication of input signal X with all coefficients. In

this algorithm, the multiplication operation is

significantly simplified as add and shift operations.

Complexity reduction in the vector scalar product is

been achieved by using the concept of computation

sharing.

In the vector scaling operation, we can carefully

select a set of small bit sequence so that the same

multiplication result can be obtained by only add and

shift operation. For example, C = 01011110 has to

multiply with input X. The multiplication of X.C is

obtained by (0101.X) <<4+ (0111.X) <<1. If both

(0101).X and (0111).X are available, then the entire

multiplication process is reduced to few addition and

shift operations. The chosen basic bit sequences are

called as alphabets. An alphabet set is a set of alphabets

that spans all the coefficients in vector C.

Since alphabets are small bit sequence the

multiplication of alphabets with operand X can be done

without seriously compromising the performance. In

the existing computation sharing multiplier design fixed

size look up rules been used. In the fixed sized lookup

rules multiplication, the maximum alphabet length L is

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015

818

fixed. Let the coefficient length is W then it is been
divided into W/L parts, each part consist of L bits. W/L
should be an integer. Once L is determined, an alphabet
set should be able to express any L bit number by one
of its alphabet multiplied by the power of two. In
existing algorithm, the used alphabet set consist of odd
numbers less than or equal to 2

L
 -1.

As shown in Fig. 1 8*8 CSHM structure based on
computation sharing scheme, the pre-computer
performs the computations αk.X, for k = 0, 1, 2, …7.
Where αk is the alphabet set. As a result, the outputs of
pre-computer are 1X, 3X, 5X, 7X, 9X, 11X, 13X and
15X for L = 4. To find the correct alphabet shifter
performs the right shift operation until it encounters 1
from LSB side and sends an appropriate select signal to
8:1 MUX along with the exact shift signal to
ISHIFTER.

The 8:1 MUXs select the correct alphabet among

the eight values received from the pre-computed value

αk.X, for k = 0, 1, 2…7. ISHIFTER simply inverse the

operation performed by SHIFTER. AND gates are used

to deal with zero coefficients. SHIFTER-ISHIFTER-

AND gate forms the select unit. The upper select unit

generates the multiplication of 4 LSB bits of coefficient

with input X. The lower select unit produces the

product of 4 MSB bits with input X. A shift of 4 bits is

performed when those two values are fed to the final

adder. A simple adder produces the final result.

Let us consider an example, X = 00100011 and

C = 01100011. The coefficient is divided into two parts

consisting of 4 bits. 0011 is fed to SHIFTER of upper

select unit and 0110 to that lower one. In the upper

select unit, shifter shifts 0011 to the right until it

encounters 1 in the LSB and sends the select signal 001

to the MUX which chooses 3X among pre-computer

output. Shifter also sends (00) to ISHIFTER so final

result of the first select unit is 3X.

For second select unit, the input will be 0110.

MUX select line is 001 and shifted signal value to

ISHIFTER is 01. The MUX output is 3X which is left

shifted once by ISHIFTER.

When 0011X and 0110 X reached to the adder,

0110X should be shifted 4 times to the left because it is

the multiplication of 4 MSB bits.

For 16*16 multiplication, if L = 4, 4 select units

required to compute the operation. Considering VLSI

implementation of this structure, select unit logic is not

area efficient.

PROPOSED CSHM

The proposed computation sharing multiplier

architecture is based on reduced alphabet set and

grouping the bits of coefficient to drives the select

signals of MUX. Figure 2 shows proposed CSHM. It

consists of pre-computer, select unit and an adder. Pre-

computer produces multiplication of alphabets with

input X. Two distinct alphabet set’s are formed namely

set 1 and 2. Set 1 consist of {1X, 2X and 3X} and set 2

consist of {4X, 8X and 12X}. Compared to existing

CSHM pre-computer alphabet count, this pre-computer

has less count and also it is constant. Hence it computes

multiplication result along with positive area overheads.

The main advantage of select unit is select signals for

MUX are obtained without any lookup rules.

With this idea, 8*8 and 16*16 computation sharing

multiplier has been implemented. Figure 2 shows

modified 8*8 computation sharing multiplier

architecture for unsigned integers. Pre-computer

Fig. 2: Block diagram of proposed CSHM

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015

819

Fig. 3: IEEE 754 single precision format

alphabet sets are of only 6 significant values and easy
and efficient to compute. It is implemented by shift and
add logic only 2 addition operations are needed in pre-
computer block. The coefficient of length W is divided
into groups of 2 bits {b0b1, b2b3,} and the number of
required MUX’s is W/2. Each coefficient group will act
as a select line to the 4:1 Mux’s. All odd 4:1 MUX’s
has input signal as (0, Set 1 alphabets). All even 4:1
MUX’s has input signal as (0, Set 2 alphabets). In each
select unit’s output’s of MUX’s are added as shown in
Fig. 2. Independent select signals benefited in parallel
operations.

If coefficient is C = 011000112 = 9910, starting
from LSB of coefficient, 11 will be the select line for
MUX 1, 00 for MUX 2 and so on. Hence values
selected by MUX’s are 3X, 0, 2X, 4X. The final result
Z = X*C is obtained by the following expression:

 = �3� + 0� + �4 ��� �����ℎ����2� + 4��� (2)

 = �3� + 96�� (3)

 = 99 ∗ � (4)

For the final multiplication result, the addition of
outputs of MUX 3 and MUX 4 needs left shift of 4 bits
because it is the multiplication of 4 most significant bits
of coefficients. If 3X, 2X, 4X are available, the
multiplication result will be of few shifts and add
operation. The select unit of proposed CSHM is highly
area and power efficient compared to existing design.

The same idea can be expanded for 16*16
multiplication. A 16*16 unsigned integer CSHM has
been implemented with the same pre-computer alphabet
sets. The critical path has addition operation which
incurs the largest delay. But compared to select unit of
existing CSHM, proposed design has less area overhead
in LUT based designs.

Floating point CSHM: The practical value in digital
application may be a fraction or an unsigned number. If
CSHM indulge same gains for signed number then its
application area can be wider. One of the formats used
for signed number representation is IEEE-754 single
precision format. To represent a number in floating
point representation, a double word is divided into 3
fields {S, E, M}, representing as follows: 1 bit for the
Sign (S), 8 bits for the Exponent (E) and 23 bits for the
Mantissa (M). Figure 3 shows the format, since the
exponent field is 8 bits, it can be used to represent
exponents between -128 and 127. The significant field
can store the first 23 bits of the binary representation of
m, namely b0, b1, b2, b3…… b23. But for the

normalized number the mantissa is always 1.m (b0 = 1).
In single precision representation 1 is implicit. Hence
only 23 bits (b1, b2, b3…… b23) are stored in single
precision format.

Figure 4 shows algorithm and expression for
floating point multiplier. To get the multiplication
result, sign bits are XORed and exponent is obtained by
simple addition. For biased exponent 127 has to be
subtracted from the addition. Also for final exponent,
overflow and underflow has to be checked. The
mantissa bits are multiplied and rounding is done with
normalization for the final 23 bits. Here 24×24
multiplier is required and hence proposed CSHM suits
very well.

If F0 = ±M0×2
E0

 and F1 = ±M1×2
E1

, Then the
multiplication of F0 with F1 is obtained by the following
expression:

� ∗ �! = ± # ∗ #! ∗ 2$ %$! (5)

The implementation of IEEE 754 floating point
multiplier using 24*24 CSHM is presented in this
study. The 24×24 significant multiplication is the main
block in which redundant computations take place
frequently and is the main obstacle in achieving high-
performance and low-power consumption in many DSP
applications. The redundant computations can be
reduced by identifying common computations and
sharing them among different arithmetic units in the
application. Figure 5 shows Floating Point multiplier
using proposed CSHM. It consists of the following
block.

Unpack: Sign bit, exponent bit and mantissa bit are
extracted from the packed IEEE 754 floating point
number.

XOR: Sign bits are XORed for the final result.

Exponent adder: Exponents are added and 127 is
subtracted for the bias result.

CSHM multiplier: It is basically 24×24 CSHM. Two
mantissa’s are multiplied by computation sharing style
and final result will be of 48 bits. For packing the result
in IEEE format, the lower 24 bits is been truncated i.e.,
rounding number to 24 bits.

Rounding: Here round to nearest technique is used
(Sivanantham et al., 2013). The value ‘1’ is added to
the LSB position of the bits to be retained if there is a
‘1’ in the MSB position of the bits to be removed.
Thus 0.b-1b-2b-31 is rounded to 0.b-1b-2b-3 +0.001 and
0.b-1b-2b-30 is rounded to 0.b-1b-2b-3. When the bits
to be removed are 10…0, a tie occurs. In this case
0.b-1b-20100 is truncated to the value 0.b-1b-20 and the
value 0.b-1b-21100 is truncated to 0.b-1b-21+0.001. This
is unbiased rounding technique, because the error range
is -½ to +½ in the LSB position of the retained bits.

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015

820

Fig. 4: Flowchart of floating point multiplication

Fig. 5: Proposed CSHM based floating point multiplier architecture

Normalization: After 24×24 multiplication the 48

bit result has to be normalized such that there

will be at least one non zero digit left to the binary

point.

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015

821

Fig. 6: Transposed form of FIR filter

Fig. 7: FP_FIR filter using FP_CSHM

The final result is packed for standard IEEE 754

single precision format.

FIR filter design using proposed CSHM: The input-

output relationship of Linear Time Invariant (LTI) FIR

filter can be described as:

���� = & C(. X�n − i� -
./ (6)

where, N represents the order of FIR filter, Ci is the

filter coefficients and X (n-i) denotes the data sample at

time instance n. Figure 6 shows a transposed Direct

Form (DF) implementation of an FIR filter. The

multipliers are replaced by proposed Computation

Sharing Multipliers (CSHM). The computations αk. X

(where k = 0, 1, 2, ... 5) are performed only once for all

k’s and all filter taps and these values are shared by all

the select and shift units for generating Ci.X

(where i = 0, 1, 2, 3). The input X (n) is multiplied by

all the coefficients C0 C1 C2…. CM-1 simultaneously and

are added for final FIR response. Expressing the

filtering operation in terms of a vector scaling operation

allows opportunity to share computations between

multiplication operations.

As the computer world emerging with accuracy

and precise response, the signal processing techniques

must support such a complex system. Floating point

system based FIR filter provide high reliability in

critical and security based application. The

implementation of the transposed direct form floating

point FIR filter is presented in this section on which

multiplier is replaced with proposed FP_CSHM.

Figure 7 shows the proposed structure of the FIR

filter using floating point CSHM. The floating point

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015

822

adder is also implemented to add all products. Final

result of filter is represented in IEEE single precision

format.

RESULTS AND DISCUSSION

The implementation result of existing CSHM,

proposed CSHM (both for unsigned integers and IEEE

single precision format), FIR filter (4 taps) design using

existing CSHM and proposed CSHM in the

environment of both Xilinx ISE 14.3 and Cadence
®

RC

compiler is discussed and relevant comparison

statement is also presented in this section.

Table 1 shows the comparison result of existing

CSHM and proposed CSHM in the Xilinx

Environment. Proposed CSHM shows 57% reduction

(8*8) and 41% reduction (16*16) in the Look up table

requirement. In an existing CSHM fixed size look up

rule is used and which chooses the number of alphabets

in the alphabet set. With the L = 2, number of alphabets

needed in the pre-computer unit is 2 and number of

select unit required is 4 and 8 for 8*8 and 16*16

multiplication respectively. With the L = 4 number of

alphabets needed in the pre-computer unit is 8 and

number of select unit required is 2 and 4 for 8*8 and

16*16 multiplication respectively. So increase In L

causes more multiplication requirement in the pre-

computer unit which automatically increases the

computational complexity. Though there is a reduction

in a number of select unit requirement compared to

previous disadvantage, advantage we gain due to

reduction in a select unit is less. But in proposed

CSHM, for 8*8 and 16*16 multiplication always

requires 6 constant alphabet sets in the pre-computer

unit and 2 and 4 select unit’s requirement respectively.

Though the number of bits to multiply gets increases

also always pre-computer entries remains same and

even better result can be achieved by using proposed

CSHM technique. For example, With L = 5, Existing

CSHM requires 16 entries in the pre-computer unit and

5 select unit’s for 20*20 multiplication. But proposed

CSHM requires only 6 entries in the pre-computer unit

and 5 select units for 20*20 multiplication. The timing

result shows no big difference in the both the

architecture. Since all the select units are working in

parallel manner in the both the architecture, the

expected final result also almost at the same time. With

the small architecture modification, proposed CSHM is

modified to work for signed number also.

Table 2 refers the comparison result of existing and

modified CSHM in the cadence
®
 RC compiler

environment. Due to the reduction in the number of

entries in the pre-computer unit of proposed CSHM,

there is a reduction in the hardware requirement. For

example, if we take 8*8 CSHM, there is a 46% area and

power reduction is achieved compared to existing

CSHM style. As mentioned above if number of bits to

Table 1: Xilinx analysis for CSHM multiplier

8*8 CSHM

16*16 CSHM

FP_CSHM

Existing CSHM

design style

Proposed CSHM

design style

Slices 118 48

 370 208

 860 629

No. of LUTs 222 94

 702 410

 1617 1211

Timing (nsec) 20.20 14.93

 20.16 17.94

 27.65 24.67

Table 2: CSHM results in CADENCE® RC compiler

8*8 CSHM

16*16 CSHM

FP_CSHM

Existing CSHM

design style

Proposed CSHM

design style

No. of cell 439 207

 890 652

 2094 1331

Power (mW) 0.533 0.288

 2.440 1.650

 5.800 4.900

Area (um2) 8528.890 4580.450

 24828.250 17716

 53538.400 43047.900

Timing (nsec) 6.397 6.050

 11.714 12

 21.310 20.800

Table 3: FIR filter implementation results (implemented in

CADENCE® RC compiler)

8*8 FIR

16*16 FIR

FP_FIR

Existing CSHM

based style

Proposed CSHM

based style

No. of cell 1288 904

 3211 2841

 10265 8143

Power (mW) 2.098 1.299

 9.700 7.250

 29.880 29.500

Area (um2) 30093.900 24854.027

 84231.100 68184.500

 229035.940 212636.790

Timing (nsec) 9 8.151

 14.381 14.503

 36 35.270

multiply get increases too, proposed design reduces the

hardware requirement still in better way.

The FIR filter implementation is done using

existing and proposed CSHM in the both the

environment. Multiplier is an essential element in FIR

filtering operation. So the FIR filter has been chosen as

an application to implement a proposed CSHM.

Figure 8 shows comparison result of Slices, LUT

requirement to implement a 4 tap FIR filter design

using existing and proposed CSHM. From Fig. 8 it is

clearly visible that proposed technique requires less

number of slices and LUT than the existing technique

due to its constant alphabet sets.

Table 3 shows comparison result obtained for a 4

tap filter design with 8*8, 16*16 and IEEE single

precision format multiplier unit. Even for 4 tap itself

Res. J. Appl. Sci. Eng. Technol., 10(7): 816-823, 2015

823

Fig. 8: FIR filter implementation results (Xilinx ISE 14.1)

proposed CSHM based FIR Filter design gave better
result in terms of area as well as power (7% reduction
for an FP_CSHM based FIR filter design) in the both
the environment. The FIR Filter is implemented in RC
compiler tool of cadence

®
 design systems shows area

and power requirement of ASIC implementation.
Real time application needs FIR filter with more

taps in order to get the smooth amplitude and phase
plot. So if the number of taps increases, it requires more
multipliers unit then designing the FIR Filter with
proposed CSHM will give significant reduction in
terms of area without compromising the delay.

CONCLUSION

In this research study, successful optimization of

existing computation sharing high speed multiplier is

obtained by constant pre-computer alphabet set and the

same work is extended for floating point multiplication

also. The FIR filter implementation using proposed

CSHM impacts positively on the area and power. The

timing results shows in both the architecture requires

very less delay to get the final output. The proposed

floating point CSHM based FIR filter implementation

also holds better results in terms of area, power

compared to existing floating point CSHM based FIR

filter implementation. So from all of the above results it

is clear that the proposed CSHM suits well for filtering

as well as processor applications.

REFERENCES

Alan, N., W. Wasserman and Y. Zhan, 2000. A painless

way to reduce power dissipation by over 18% in

booth encoded carry save array multipliers for

DSP. Proceeding of IEEE Workshop Signal

Processing System, pp: 571-580.

Jongsun, P., W. Jeong, H. Mahmoodi-Meimand,

W. Yongtao, C. Hunsoo and K. Roy, 2004.

Computation sharing programmable FIR filter for

low-power and high-performance applications.

IEEE J. Solid-St. Circ., 39(2): 348-357.

Kernhof, J., M.A. Beunder, B. Hoefflinger and

W. Haas, 1989. High-speed CMOS adder and

multiplier modules for digital signal processing in a

semicustom environment. IEEE J. Solid-St. Circ.,

24(3): 570-575.

Kuo, K.C. and C.W. Chou, 2010. Low power and high

speed multiplier design with row bypassing and

parallel architecture. Microelectr. J., 41: 639-650.

Mamatha, B. and V.V.S.V.S. Ramchandram, 2012.

Design and implementation of 120 order FIR filter

based on FPGA. Int. J. Eng. Sci. Emerg. Technol.,

3(1): 90-97.

Mark, R.S., 1989. Design and clocking of VISI

multipliers. Technical Report No, CSL-TR-89-397.

Sivanantham, S., K. Jagannadha Naidu,

S. Balamurugan and D. Bhuvana Phaneendra,

2013. Low power floating point computation

sharing multiplier for signal processing

applications. Int. J. Eng. Technol., 5(2): 979-985.

Sravanthi, K., V.V.K.D.V. Prasad Battula and

V.V. Rao, 2012. Design of FIR filter by using

sharing multiplier with low delay. Int. Refereed

J. Eng. Sci. (IRJES), 1(1): 031-038.

Wu, A.Y., K.J.R. Liu and A. Raghupathy, 1998. System

architecture of an adaptive reconfigurable DSP

computing engine. IEEE T. Circ. Syst. Vid., 8(1):

54-73.

