
Research Journal of Applied Sciences, Engineering and Technology 10(7): 831-840, 2015
DOI:10.19026/rjaset.10.2437
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2015 Maxwell Scientific Publication Corp.
Submitted: February 26, 2015 Accepted: March 25, 2015 Published: July 10, 2015

Corresponding Author: C.D. Rajaganapathy, Department of Computer Science, PERI Institute of Technology, Chennai,

Tamilnadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

831

Research Article
A Comparative Study of Different Software Fault Prediction and Classification Techniques

1C.D. Rajaganapathy and 2A. Subramani

1Department of Computer Science, PERI Institute of Technology, Chennai, Tamilnadu, India
2Department of MCA, KSR College of Engineering, Tiruchengode, Tamilnadu, India

Abstract: The main aim of this study is to survey about various techniques of fault prediction, clustering and
classification to identify the defects in software modules. A software system consists of various modules and any of
these modules can contain the fault that harmfully affects the reliability of the system. But early predictions of faulty
modules can help in producing fault free software. So, it is better to classify modules as faulty or non-faulty after
completing the coding. Then, more efforts can be put on the faulty modules to produce a reliable software. A fault is
a defect or error in a source code that causes failures when executed. A faulty software module is the one containing
number of faults, which causes software failure in an executable product. A software module is a set of functionally
related source code files based on the system’s architecture. Fault data can be collected from problem reporting
system based on the module level. Defect prediction is particularly important in the field of software quality and
reliability. Accurate prediction of faulty modules enables the verification and validation activities focused on the
critical software components. A software quality classification model predicts the risk factor for software modules,
which is an effective tool for targeting timely quality improvement actions. A desired classification technique
provides better classification accuracy and robustness. This study surveys various fault prediction, clustering and
classification techniques in order to identify the defects in software modules.

Keywords: Bayesian classification, Expectation Maximization (EM), Fuzzy C-Means (FCM) clustering, Hyper

Quad Tree (HQT), k-means clustering, Similarity-based Software Clustering (SISC), spiral life cycle
model, Support Vector classification (SVM)

INTRODUCTION

Software fault prediction (Karpagavadivu et al.,

2012) method is used to enhance the quality of the
software and to assist software inspection by locating
possible faults. It is a major part of software quality
assurance, which is very popular and essential concept
for researchers within the software engineering
community. The software quality prediction is
performed by identifying the prediction of module as
faulty or non-faulty. Faults are major problem in
software systems that needs to be resolved. A software
fault or error refers a defect in a system. The major
classes of software faults are shown in below:

• Syntactic faults
• Semantic faults
• Service faults
• Communication faults
• Exceptions

The major problem of fault prediction (Catal, 2011;
Hall et al., 2012) is finding the relationship between the

modules in the software. There are many software
defect prediction and classification methods that are
available to detect and isolate faults. Each approach has
their benefits and limitations. This study presents the
survey on software fault prediction (Rohit Mahajan
et al., 2014; Gao et al., 2011) and classification models.
The spiral life cycle model is a type of iterative
software development model, which is generally used
in high risk projects such as, defect prediction and fault
classification. Under the spiral life cycle model,
identifying the faulty modules early in an iteration leads
to a more reliable prototype. The high reliability of each
iteration translates into a highly reliable product.

The spiral model (Hashmi and Jongmoon, 2007)
has four quadrants, which includes, object
determination, risk identification, product development
and next phase planning. The first phase begins with the
identification of the product objectives and
functionalities. The next step deals with evaluating the
alternative relative to the objectives and constraints.
The third quadrant follows the waterfall model to
incorporate the further incremental development.
Finally, planning for the next phase starts after the end
of this incremental model. Quality is built into the spiral

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

832

model by means of activities involved in each phase,
like risk analysis, development plan, validation,
verification and acceptance testing. Moreover, the
development phase of spiral performs step by step
analysis of the product, which ensures that no faults are
escaped. In this model, the Dependent and Independent
(DID) modules are identified based on their
functionality. A data detection is the quantifiable
expression of a rule and the rules can be detected in the
source code by using the fragments of the data. The
process of data detection includes, standardization, data
centering and whitening.

Classification (Lessmann et al., 2008) is a process
of finding a set of models that describe and distinguish
data classes or concepts. The derived model is
represented in various forms such as classification
rules, decision tree etc. In software engineering, there
are many studies representing the use of Bayesian
classification to solve different challenges. Bayesian
classifiers produce probabilities for class assignments,
rather than a single definite classification. It has been
surveyed in this study to predict the software prone
modules at an early stage with the help of probability
distribution models. Bayesian classifiers provide better
reliability, when compare with the existing methods
like logistic regression, Support Vector Machine
(SVM) and classification trees.

Clustering is a non-hierarchical procedure in which
items are moved among sets of clusters until the desired
set is reached. Each clustering technique makes some
assumptions about the underlying dataset. It is hard to
satisfy all the assumptions, so it is beneficial to apply
different clustering methods on the same dataset.
Similarity-based Soft Clustering (SISC) is a clustering
technique that is based on the similarity function given.
SISC is similar to other clustering techniques, such as
K-Means, Fuzzy C-Means. It starts with a carefully
selected set of initial cluster and uses an iterative
approach to improve the clusters. This approach only
requires a similarity function to be defined properly and
does not rely on any underlying probability
assumptions. SISC is able to run faster than the
traditional hard clustering algorithms. This technique is
robust against outliers and it is also able to find clusters
that hard clustering algorithms cannot able to find.

A software system may have defects in the
software module and the defect may affect the
reliability of the software. So, the defects must be
predicted in order to improve the quality of the software
system. This survey study depicts about various
techniques for the identification of defects in software
modules.

SOFTWARE FAULT PREDICTION AND

CLASSIFICATION TECHNIQUES

The software fault prediction and classification
comprises of following stages:

• Software fault prediction
• Software reliability enhancement
• Defect classification
• Clustering

Software fault prediction techniques: Software fault
prediction (Rawat and Dubey, 2012) is the process of
classifying software modules into fault prone and non-
fault prone. Early detection of fault prone module
enables verification experts to concentrate their time
and resources on the problem areas of the system under
development. Due to some faulty modules, the
maintenance phase of software products could become
really painful for the users and costly for the
enterprises. This section presents some of the software
fault prediction techniques. The techniques are, Spiral
model life cycle, Hyper Quad Tree (HQT) and the EM
algorithm, Ripple Down Rule (RIDOR), metric based
approaches and hybrid feature selection method.

Spiral Life Cycle model (SDLC): The spiral life cycle
model is related to the incremental model in Software
Development Life Cycle (SDLC) (Ruparelia, 2010),
with more emphases placed on risk analysis. The spiral
model has four phases, planning, risk analysis,
engineering and evaluation. A software project
repeatedly passes through these phases in iterations
(called spirals) (Madachy et al., 2006). Each iteration of
a spiral life cycle model produces a prototype system
that is more suitable for operational testing. With the
help of spiral life cycle model, the software fault prone
modules are predicted at early stage, which improves
better system reliability. Discriminant analysis can be a
useful tool in identification of fault modules in tactical
systems. A key benefit of the spiral model is that it
attempts to contain project risks and costs at the outset.
It has more advantages compared than the other
models. The spiral life cycle model is one of the most
flexible model in SDLC. It is more suitable for high
risk and mission critical software projects, where
business needs may be unstable. An important feature
of the spiral model is that each cycle is completed by a
review involving the primary people or organizations
concerned with the product. A highly customized
product can be developed using life cycle and it also
used for high amount risk analysis. The spiral model is
characterized by iterative development of evolutionary
prototypes, which is more suitable for operational
testing. It creates a risk driven approach to the software
process rather than a document driven or code driven
process. It combines the strengths of the other models
and resolves many of their difficulties and problems.
The advantages of this model is that its range of options
provides the good features, while its risk driven
approach avoids many of their difficulties.

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

833

Hyper Quad Tree (HQT) and Expectation-

Maximization (EM) algorithm: Quad Tree (4-ary
tree) is the recursive data structure, this tree stands for a
division of the matrix into sub matrices (nodes). Leafs
of the QT are classified into complete and blank nodes.
The QT (Bishnu and Bhattacherjee, 2012) based
method assigns the suitable initial cluster centers and
eliminates the outliers. It has some general features, it
decomposes the space into adaptable cells in which
each cell has a high capacity. Hyper quad tree
(Sasidharan and Sriram, 2014) works in n-dimensions,
hence it finds better initial cluster centers than former
algorithms. This algorithm is mainly used to predict the
software faults in a given module. It offers a better
cluster center and lower fault ratio in a given dataset.
The HQT is a universal quad tree, which represents a
total recursive division of the n-dimensional vector
space. Every inner node of HQT includes a covering
hyper-quad and 2n links to all its sub hyper-quad.
Finally, it divides the regions recursively, so that no
region contains more than one data point. The
Expectation Maximization (EM) (Meenakshi et al.,
2012) algorithm is a popular iterative refinement
technique that can be used for finding parameter
estimation. HQT based EM algorithm (Rawat and
Dubey, 2012) is known to be an appropriate
optimization for finding compact clusters. It guarantees
an elegant convergence and assigns an object to a
cluster based on the probability of membership
functions. After that, it iteratively rescores the objects
and updates the estimates. The accuracy of fault
prediction is enhanced using the HQT based EM
(Varade and Ingle, 2013) algorithm. However, this
algorithm also has some limitation. The user has to
initialize the number of clusters, which is very difficult
to identify using HQT based EM algorithm. It is not
providing the exact centroid.

Ripple Down Rule (RIDOR): Ripple Down Rules
(RIDOR) (Najadat and Alsmadi, 2012) is a knowledge
acquisition method, which controls the communications
between the expert and a shell to attain the correct
knowledge. Multiple Classification Ripple Down Rules
is an extension of RIDOR, which provides a basis for
solving a general classification problems by using
beyond classification. This approach does not use any
notion for extracting or mining the expert’s knowledge.
The RIDOR inference operation is based on searching
the knowledge base as a decision list. It also shifts the
development emphasis to maintenance by blurring the
dissimilarity between the initial development and
maintenance. This algorithm learns defect prediction
using mining static code attributes, which is used to
predict the faults with high accuracy and low error rate.
This approach used the rule based classification method
to classify the modules from their fault prone. The main
intention of this method is to enhance the software

development process and effectively allocate the
resources. The limitation of RIDOR is that the
knowledge base is ill structured, which results a
repetition of knowledge. However, this could
exponentially increase the knowledge acquisition task.
In order to overcome these drawbacks, the spiral
development life cycle model is developed.

Metric based approaches: Faults and failures are the
cost factors in software, which describes the significant
amount of any project budget. This information can be
used as a feedback to the enhancement of the
development process. It also used for process
improvement and cost reduction. Based on these
reasons, it is clear that the methods (Radjenović et al.,
2013) are needed to enhance, control and predict fault
handling in general. This type of methods is categorized
into two major classes: methods for predicting the
number of faults in a specific module and methods for
identifying the fault prone modules. The first type of
methods are problematic to develop a valid model,
which is transferable between projects or organizations.
Thus, methods for identification of fault and failure
prone modules and models for prediction are a potential
way to enhance software quality and to diminish cost.
Effective defect prediction models help to enhance the
quality assurance activities on defect prone modules.
Machine learning approaches are used to predict the
probability of fault proneness. The dependent variable
is predicted based on the faults found during the
software development life cycle. Both level metrics and
class metric methods are used to predict the defects.
Level metrics are suitable for both procedural and
object oriented programs and class metrics are only
suitable for object oriented programs. The diversity of
these metrics (Catal, 2012; Shanthini and
Chandrasekaran, 2012) inhibits the progress that often
results from focusing on one simple target. It requires a
long term commitment, which are the disadvantages of
this method. In order to overcome these limitations a
spiral life cycle model is developed.

Software reliability enhancement: Software reliability
(Lyu, 2007) can be enhanced through extensive testing
and debugging. Reliable software is compulsory,
complex mission critical systems.

Decision tree and fuzzy logic: Decision trees (Pandey
and Goyal, 2010) are great and standard tools for
classification and prediction. It produces classifiers in a
form of tree structure, where each leaf node illustrates a
decision node. In this method (Sehgal et al., 2012),
classification starts from the root and continues to move
down until the leaf node is reached. It helps to classify
the faulty and non-faulty modules in software. In fuzzy
decision tree, each path from the root node to a terminal
node corresponds to a fuzzy rule. Generally, the

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

834

decision tree technique is used for inductive learning
and it is used to feature subset selection process in the
software cost estimation model. ID3, C4.5 and CART
methods are widely for constructing a decision tree.
This method is weak in handling uncertainty and
fuzziness, which are the drawbacks of fuzzy decision
tree. ID3 (Elyassami and Idri, 2011) is a type of
decision tree method for software effort estimation,
which is designed by incorporating the concepts of
fuzzy set. C4.5 (Wang et al., 2012) is also a type of
decision tree, which is used to build a decision tree
from a set of training data by using information
entropy. The disadvantage of this method is the module
selection and the distribution of defects tends to one or
two defects in one file. In order to overcome these
drawbacks, the spiral life cycle model is enhanced.

Radial Basis Function (RBF): The software reliability
and quality are enhanced by using Radial Basis
Function (RBF) (Buchtala et al., 2005), which is the
best approach to identify the software faults. Initially,
the data is split into clusters using fuzzy subtractive
clustering after that, the RBF is applied to predict the
faults. It is a real valued function, whose values
depends on the distance from its respective field center.
RBF provides a flexible way to generalize linear
regression function, which possess strong mathematical
properties of best approximation. This model can be
viewed as a realization of a sequence of two mappings.
The first method is a nonlinear mapping of the input
data and the second method is a linear mapping of the
basis function output. The selection of RBF centers is
difficult, which are not guaranteed to capture the
structure of information that is the limitation of this
method.

Defect classification: The classification perspective
determines the information extracted from the fault
classification. The main intention of fault classification
is to identify the faults correctly and the key issue is to
enhance the process based on the faulty information. It
is necessary to monitor the agreement between the
clusters to assure the correctness in the classification. A
classifier performs the fault placement process into a
certain classification category. This section presents
some techniques to classify the faults in software.

Bayesian classification: Bayesian classification (Catal
et al., 2011) provides a natural statistical framework for
decision making by using the software utilities. Their
representation of causal relationships among variables
are meaningful to software practitioners, which is based
on the Bayes theorem. It allows to capture uncertainty
about the model in a principled way by determining
probabilities of the outcomes. This technique (Tosun
Misirli and Basar Bener, 2014) can predict class
membership probabilities, such as the probability of a

given tuple belongs to a particular class. It can be
exploited to support effective decision making for
improving the software process. This classification
method (Mahajan et al., 2012) is used to deduce the
probability distribution for a target variables (i.e., defect
detected). This model is feasible, adaptable to object
oriented systems and useful to predict the faulty prone
classes in software. This technique successfully
classifies the software components into faulty and fault
free. It offers the following advantages, it maintains the
observations, statistical distribution and prior
assumptions. It encodes the causal relationships among
variables to predict the future actions. It is necessary to
use a suitable fault classification technique to handle
the software faults.

Logistic regression: Logistic Regression (Reddy and
Babu, 2013) is a type of statistical classification model,
which is used to predict a binary response from a binary
predictor. It measures the relationship between a
dependent and independent variables, which are
commonly continuous. This technique uses class level
metrics for the software fault prediction that is based on
the statistical approach. A negative binomial regression
model is developed to identify the number of faults on
each file of the system. It provides the number of faults
for each file of a release based on a characteristics, such
as, the file size, number of faults, programming
language and age of the file. The logistic regression
consists of two models, namely, discrete and
conventional. The parameter estimation in the logistic
curve models reproduced the values of the parameters
very accurately. The parameter estimates of the
continuous model vary with the number of data points.
The discrete model proves the stable values for various
numbers of data points. This characteristic is very
essential for the software reliability enhancement.
Logistic regression offers an easier interpretation
compared to other classification techniques. It provides
low design quality, which is the drawback of this
technique. The mentioned drawback of this method is
overwhelmed by enhancing the Bayesian classification
technique.

Support Vector Machine (SVM) classification: SVM
is a classification technique, which has been
successfully applied for solving classification and
regression analysis. It is adaptive to model nonlinear
functional relationships that are difficult to model with
other techniques. It provides nonlinear function
approximations by nonlinearly mapping input vectors
into feature spaces. This method (Xing et al., 2005)
combines the advantages of linear and non-linear
methods by embedding the data into a feature space. It
uses machine learning techniques and method level
metrics. It is robust in nature than other techniques for
software quality prediction. SVM provides the best

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

835

prediction performance in terms of precision, recall and
accuracy. The results indicate that the performance of
SVM (Elish and Elish, 2008) is better than the other
classification methods. But, the disadvantage is that it
does not work well in public data sets. The mentioned
drawback is overwhelmed by enhancing the Bayesian
classification method.

Classification trees: Classification tree is a popular
approach for software defect prediction, which are
based on the statistical based approach. It involves the
process of modules categorization represented by a set
of software metrics or code attributes into faulty and
non-faulty modules. This method (Catal and Diri, 2009)
uses two different types of datasets, namely, JM1 and
KC1. Each dataset includes various software modules
together with their number of faults and characteristic
code attributes. The accuracy metric is not suitable for
software fault prediction studies because, imbalanced
datasets cannot be evaluated with this metric, which is
the drawback of this metric. But, the accuracy metric of
the Bayesian classification method is suitable for
predicting software faults.

Clustering: Clustering is defined as the classification
of data or object into diverse groups. It is the process of
partitioning the data set into diverse subsets. This sector
presents some of the clustering algorithms for the
prediction of software faults. The clustering methods
are, SISC, K-Means clustering and Fuzzy C-Means
clustering.

Similarity-based Soft Clustering (SISC): Similarity-
based Soft Clustering (SISC) (Shanthini and
Chandrasekaran, 2012) is a clustering techniques based
on the similarity function given. It aims to provide a
soft clustering on a set of documents based on a
similarity measure. In this model, the documents can be
clustered into multiple clusters. SISC is able to execute
the codes in an efficient manner and it provides security
against outliers. In this technique, the software metrics
are used as independent variables and fault data is used
as dependent variables. This clustering method is an
unsupervised learning approach, which is used to group
the modules having similar metrics by using similarity
measures or distances. After clustering, the mean values
of each the software metrics within clusters can be
checked against the metric threshold values. If the
limits are exceeded, the cluster can be labeled as fault
prone. After that, the evaluation parameters are used to
evaluate the performance of the clustering process.
Hence, False Positive Rate (FPR), False Negative Rate
(FNR) and the error values are calculated based on the
outcomes.

K-means clustering: K-Means clustering (Hribar and
Duka, 2010) is a non-hierarchical clustering procedure

in which items are moved among sets of clusters until
the desired set is reached. This technique follows a
partitional clustering approach in which partitioning
method creates an initial partitioning. After that, it uses
an iterative relocation technique that attempts to
enhance partitioning by moving objects from one group
to another. This algorithm begins with finding the
initial centroids for potential clusters i.e., each cluster is
associated with a centroid. The observation is assigned
to each cluster based on their distance from the
centroid. When partitioning the data set the sum of the
intra-cluster distance is diminished to an optimum
value. This algorithm reassigns and executes the data
points until the convergence criterion is met. The K-
Means algorithm (Sandhu et al., 2010) has some
general properties, every member of a cluster is closer
to its cluster than any other cluster. There are always K-
clusters and it has at least one item in each cluster,
which are non-hierarchical. However, the K-Means
algorithm also has some drawbacks. The user has to
initialize the number of clusters, which is very difficult
to identify in most of the cases. It requires the selection
of the suitable initial cluster centers, which is again
subject to error. The structure of the cluster depends on
the initial cluster center this may result in an inefficient
clustering. K-Means algorithm is very sensitive to
noise. In order to overcome these drawbacks, the
Similarity-based Soft Clustering (SISC) technique is
developed.

Fuzzy C-Means clustering (FCM): Fuzzy C-Means
(FCM) (Bisht et al., 2012) iteratively moves the cluster
centers to the right location within a data set. It is the
fuzzified version of the k-means clustering algorithm,
which allows one piece of data to two or more clusters.
This method iteratively moves the cluster centers to the
right location within a data set by updating the cluster
centers and the membership grades for each data point.
It plays an essential role in solving problems in many
areas including fuzzy intelligent control, pattern
classification and fault pattern classification. FCM is
mostly used algorithm for classifying faults and pattern
classification. In this method, it assigns a data point to
distinct cluster and membership values to each
observation in all derived clusters. After clustering, the
fuzzy model is constructed based on the clustered data.
The validity measures are scalar indices that assess the
goodness of the obtained partition. Hence, this measure
is designed to quantify the separation and compactness
of the clusters. FCM (Yang et al., 2011) is used to
improve the software process control and attain high
software reliability, when predicting the faults in
software. However, this technique also has the
disadvantage that the number of fuzzy sets must be
informed. The mentioned drawback is overwhelmed by
developing the SISC method.

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

836

Fig. 1: Software fault prediction using SDLC

PROPOSED METHODOLOGY

The proposed software defect prediction
methodology will use the spiral life cycle model to
predict the faults. This method is used to improve the
quality of the software and avoid building an error
prone modules in future. Figure 1 shows the overall
flow of the proposed software fault prediction model.
Initially, the Dependent and Independent (DID)
modules are identified in this model based on their
functionality. The standardization, data centering and
whitening processes are performed for faulty data
detection. Then, the Bayesian classification algorithm is
used to classify the faulty and non-faulty modules in
software. Moreover, the SISC method is proposed to
cluster the similar data based on the similarity measure.
The performance comparison of a software fault
prediction will be done by using the SISC method. The
proposed system accurately predicts and classifies the
software faults to improve the system reliability and
quality.

RESULTS AND DISCUSSION

Various techniques for software fault prediction

and classification are illustrated. The results of this
survey are shown in Table 1. The defect prediction with
the Bayesian classification enhances the software
reliability and quality. From the survey, it is evident
that the Spiral life cycle model and Bayesian
classification provide, the better fault prediction results

compared than the existing methods such as, HQT-EM,
RIDOR and Metric based approaches. Also, the
Bayesian classification classifies the faulty and non-
faulty modules effectual compared than the existing
methodologies, such as, logistic regression, SVM and
classification trees. Moreover, the SISC method
performs well than the other clustering methods such
as, K-Means and FCM.

Summary: From this survey it is observed that, the
existing software fault prediction models provides
inappropriate risk management decisions. It does not
effectively take dependencies between the attributes
into consideration. Thus, we use a SDLC method to
improve the performance of the fault prediction results.
The existing classification methods are very difficult to
understand and it does not provide the exact
classification result. Some of the disadvantages of
existing classification algorithms are its memory
dependency, computational complexity and large
computational time. The above mentioned drawbacks
are overwhelmed in this study by using a Bayesian
classification method. The existing clustering
techniques also has some drawbacks, such as, the user
has to initialize the number of clusters, which is very
difficult to identify. It needs to select the suitable initial
cluster centers and it is very sensitive to noise.
Moreover, it does not improve the quality of clustering
in an efficient manner. In order to avoid these
drawbacks, the SISC clustering technique is proposed
in this study. The SISC method provides the best

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

837

Table 1: Information about different fault prediction and classification techniques
Techniques Author and reference Year Performance Quality measurement
Software fault prediction methods
Spiral life cycle model

Ruparelia (2010) 2010 It splits the SDLC models into three broad

categories such as, linear, iterative and
combination of both. It provides a visual
interface to an end user.

• Drive iterations
• Requirements management
• Visual models
• Control changes
• Customization

 Madachy et al.
(2006)

2006 The spiral model is extended to address the
problems of software intensive systems. It
uses three specialized teams to estimate the
cost and schedule for hybrid process.

• Simulation inputs
• System response to volatility
• Tradeoff functions
• Parameterization

Hyper Quad Tree (HQT)
-Expectation
Maximization (EM)

Bishnu and
Bhattacherjee (2012)

2012 It evaluates the effectiveness of QT based
K-means clustering algorithm to predict
faulty software modules.

• AR3, AR4 and AR5 dataset
• False Positive Rate (FPR)
• False Negative Rate (FNR)
• Error value

 Varade and Ingle
(2013)

2013 It proves that the results of hyper-quad tree
is more accurate than QT and it overcomes
the weakness of K-means algorithm.

• AR1, AR3, AR4, AR5 and AR6
datasets

• False Positive Rate (FPR)
• False Negative Rate (FNR)
• Error rate

 Meenakshi et al.
(2012)

2012 It improves the accuracy of fault prediction
by using EM algorithm. It proves that EM
algorithm is more accurate than K-means
owing to lower error rate.

• Incorrectly classified species
• Correctly classified species
• Error rate
• Label prediction

Ripple Down Rule
(RIDOR)

Najadat and Alsmadi
(2012)

2012 This system classifies the software modules
into faulty and non-faulty prone. It learns
defect prediction using mining static code
attributes.

• PC1, PC2, PC3, PC4, CM1,
MW1, KC3 and KC4 datasets

• Size
• Faulty module number
• % of faulty modules
• Metric number
• Accuracy

Metric based approaches Radjenović et al.
(2013)

2013 It identifies and depicts the current state-of-
the-art software metrics to assess their
applicability in software fault prediction.

• Dataset P2 to P10
• Fault classification
• Fault ranking
• Dependent variable granularity
• Object oriented metrics

 Shanthini and
Chandrasekaran
(2012)

2012 This study investigates the significance of
various software metrics in order to predict
the defects. It analyzes the performance of
various classifiers to predict faults based on
public domain such as NASA and KC1
dataset.

• KC1 and NASA dataset
• Precision
• Recall
• F-measure
• Accuracy
• True positive rate

Reliability enhancement
Decision tree and fuzzy
logic

Huang et al. (2006) 2006 It embedding risk assessment information
into software cost estimation model by
fuzzy decision tree approach.

• Fuzzy the software cost drivers
• Risk assessment model

construction
• Risk estimation
• Prediction Accuracy Rate

(PRED)
• Mean Magnitude of Relative

Error (MMRE)
 Sehgal et al. (2012) 2012 This technique helps project manager to

make efficient use of limited resources to
target those modules that are defected.

• PC1 and NASA dataset
• Metrics Data Program (MDP)
• Binary splits
• Confidence factor
• Reduced error pruning

 Elyassami and Idri
(2011)

2011 This study investigates the use of fuzzy ID3
decision tree for software cost estimation. It
handles uncertain and imprecise data, when
describing the software projects.

• Tukutuku and COCOMO’81
datasets

• Magnitude of Relative Error
(MRE)

• Mean Magnitude of Relative
Error (MMRE)

• Prediction rate
• Significant Level (SL) value

Radial Basis Function
(RBF)

Buchtala et al. (2005) 2005 Evolutionary Algorithms (EA) performs
feature and model selection process
simultaneously for RBF.

• ID dataset
• Signature verification
• Lift factors
• Process optimization
• Training time

Defect classification

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

838

Table 1: Continue
Techniques Author and reference Year Performance Quality measurement
Bayesian classification Mahajan et al. (2012) 2012 It provides a best way to support software

quality through improved scheduling and
project control.

• Mean Absolute Error (MAE)
• Root Mean-Squared Error

(RMSE)
• Probability of detection
• Probability of false alarms

Logistic regression Reddy and Babu
(2013)

2013 It provides an additional decision making rule
to the software developers, when they
managing the software resources.

• PL/I database software
• Mean squared error
• Discovery of errors STS2, STS3

and STS4
Support Vector Machine
(SVM)

Xing et al. (2005) 2005 This study evaluates the software quality
level and indicates the software quality
problems in early stage. It performs well even
in high dimensional spaces under small
training sample conditions.

• Eigen value
• Kernel function
• T1ERR, T2ERR (error types)
• Quality Discriminant Analysis

(QDA)
 Elish and Elish

(2008)
2008 This analysis evaluates the capability of SVM

to predict software defect prone modules and
compares its prediction performance against
statistical and machine learning models.

• NASA dataset
• Prediction rate
• Defect prone modules

Classification trees Catal and Diri (2009) 2009 This technique investigates the class level
metrics to predict faults during design phase.

• RQ1, RQ2, RQ3 and RQ4
dataset

• Distribution metrics (class,
quantitative values and
component)

• Statistics machine learning
Clustering
Similarity based Soft
Clustering (SISC)

Kanimozhi and
Balakrishnan (2014)

2014 This clustering method is used to group the
test cases based on the similarity values to
each cluster.

• Test cases
• Fault detection rate
• Redundancy level
• Execution time

K-means clustering Hribar and Duka
(2010)

2010 This method predicts the weibull distribution
parameters shape, slope and total number of
faults in the system based on the software
components.

• Weibull distribution
• Prediction rate
• Beta prediction
• Accuracy rate

 Varade and Ingle
(2013)

2012 It allocates the centroids to each cluster in a
cunning way, because different location
causes various results.

• Public dataset
• False Positive Ratio (FPR)
• False Negative Ratio (FNR)
• Error rate
• Precision

 Sandhu et al. (2010) 2010 This technique determines the intrinsic
grouping in a set of unlabeled data. It is used
to find the faulty modules in an open source
software systems.

• Public dataset
• Threshold value
• Accuracy of prediction
• Probability of detection
• Probability of false alarms

Fuzzy C-Means (FCM)
clustering

Bisht et al. (2012) 2012 It produces an optimal c partition by
minimizing the sum of squared error
objective function.

• Accuracy
• Probability of detection
• Probability of false alarms
• MAE value
• RMSE value

 Yang et al. (2011) 2011 This method detects and isolates the faults in
order to avoid overall failure of the system,
which includes the process of feature
extraction, selection and classification.

• Partition co-efficient
• Partition-entropy
• Clustering result
• Precision of fault diagnosis

clustering results, when compared to the k-means and
FCM clustering algorithms.

CONCLUSION

In this study, an overview of various software fault
prediction and classification methods are presented.
From the survey, it is finding out that the spiral life
cycle model and Bayesian classification are the very
powerful fault detection techniques to accurately
predict and classify the software defects. When,
combined with the SISC clustering method, it improves

the reliability and quality of the system. The best
software defect prediction and classification techniques
can be framed based on the spiral life cycle model,
Bayesian classification and SISC to achieve the best
system reliability.

REFERENCES

Bishnu, P.S. and V. Bhattacherjee, 2012. Software fault

prediction using quad tree-based k-means
clustering algorithm. IEEE T. Knowl. Data En.,
24(6): 1146-1150.

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

839

Bisht, A., A.S. Brar and P.S. Sandhu, 2012. Prediction
of faults in open source software systems using
FCM. Proceeding of the International Conference
on Computer Graphics, Simulation and Modeling.

Buchtala, O., M. Klimek and B. Sick, 2005.
Evolutionary optimization of radial basis function
classifiers for data mining applications. IEEE
T. Syst. Man Cy. B, 35(5): 928-947.

Catal, C., 2011. Software fault prediction: A literature
review and current trends. Expert Syst. Appl.,
38(4): 4626-4636.

Catal, C., 2012. Performance evaluation metrics for
software fault prediction studies. Acta Polytech.
Hung., 9(4): 193-206.

Catal, C. and B. Diri, 2009. A systematic review of
software fault prediction studies. Expert Syst.
Appl., 36(4): 7346-7354.

Catal, C., U. Sevim and B. Diri, 2011. Practical
development of an eclipse-based software fault
prediction tool using naive bayes algorithm. Expert
Syst. Appl., 38(3): 2347-2353.

Elish, K.O. and M.O. Elish, 2008. Predicting defect-
prone software modules using support vector
machines. J. Syst. Software, 81(5): 649-660.

Elyassami, S. and A. Idri, 2011. Applying fuzzy ID3
decision tree for software effort estimation. Int.
J. Comp. Sci. Issues, 8(4): 131-138.

Gao, K., T.M. Khoshgoftaar, H. Wang and N. Seliya,
2011. Choosing software metrics for defect
prediction: An investigation on feature selection
techniques. Software Pract. Exper., 41(5): 579-606.

Hall, T., S. Beecham, D. Bowes, D. Gray and
S. Counsell, 2012. A systematic literature review
on fault prediction performance in software
engineering. IEEE T. Software Eng., 38(6):
1276-1304.

Hashmi, S.I. and B. Jongmoon, 2007. Software quality
assurance in XP and spiral: A comparative study.
Proceeding of the ICCSA International Conference
on Computational Science and its Applications, pp:
367-374.

Hribar, L. and D. Duka, 2010. Software component
quality prediction using KNN and Fuzzy logic.
Proceeding of the 33rd International Convention
MIPRO, pp: 402-408.

Huang, S.J., C.Y. Lin and N.H. Chiu, 2006. Fuzzy
decision tree approach for embedding risk
assessment information into software cost
estimation model. J. Inf. Sci. Eng., 22(2): 297-313.

Kanimozhi, R. and J. Balakrishnan, 2014. Cosine
similarity based clustering for software testing
using prioritization. J. Comput. Eng., 16(1): 75-80.

Karpagavadivu, K., T. Maragatham and S. Karthik,
2012. A survey of different software fault
prediction using data mining techniques methods.
Int. J. Adv. Res. Comput. Eng. Technol., 1(8).

Lessmann, S., B. Baesens, C. Mues and S. Pietsch,
2008. Benchmarking classification models for
software defect prediction: A proposed framework
and novel findings. IEEE T. Software Eng., 34(4):
485-496.

Lyu, M.R., 2007. Software reliability engineering: A
roadmap. Proceeding of the Future of Software
Engineering (FOSE'07). Minneapolis, MN, pp.
153-170.

Madachy, R., B. Boehm and J.A. Lane, 2006. Spiral
lifecycle increment modeling for new hybrid
processes. In: Wang, Q. et al. (Eds.),
SPW/ProSim, 2006. LNCS 3966, Springer, Berlin,
Heidelberg, pp: 167-177.

Mahajan, A., V. Gupta and P.S. Sandhu, 2012. A bayes
network classification approach for finding faulty
modules in open source software systems. Int.
J. Res. Eng. Technol., 1(1): 45-48.

Meenakshi, P.C., S. Meenu, M. Mithra and P. Leela
Rani, 2012. Fault prediction using quad tree and
expectation maximization algorithm. Int. J. Appl.
Inf. Syst., 2(4): 36-40.

Najadat, H. and I. Alsmadi, 2012. Enhance rule based
detection for software fault prone modules. Int.
J. Softw. Eng. Appl., 6(1): 75-86.

Pandey, A.K. and N.K. Goyal, 2010. Predicting fault-
prone software module using data mining
technique and fuzzy logic. Int. J. Comput.
Commun. Technol., 2: 2-4.

Radjenović, D., M. Heričko, R. Torkar and
A. Živkovič, 2013. Software fault prediction
metrics: A systematic literature review. Inform.
Software Tech., 55(8): 1397-1418.

Rawat, M.S. and S.K. Dubey, 2012. Software defect
prediction models for quality improvement: A
literature study. Int. J. Comput. Sci. Issues,
9(5): 288.

Reddy, K.V.S. and B.R. Babu, 2013. Logistic
regression approach to software reliability
engineering with fault prediction. Int. J. Softw.
Eng. Appl., 4(1): 55-65.

Rohit Mahajan, E., G. Sunil Kumar and R.K. Bedi,
2014. Comparison of various approaches of
software fault prediction: A review. Int. J. Adv.
Technol. Eng. Res., 4(4): 13-16.

Ruparelia, N.B., 2010. Software development lifecycle
models. ACM SIGSOFT, 35(3): 8-13.

Sandhu, P.S., J. Singh, V. Gupta, M. Kaur, S. Manhas
and R. Sidhu, 2010. A K-means based clustering
approach for finding faulty modules in open source
software systems. World Acad. Sci. Eng. Technol.,
72: 654-658.

Sasidharan, R. and P. Sriram, 2014. Hyper-quadtree-
based K-means algorithm for software fault
prediction. Adv. Intell. Syst. Comput., 246:
107-118.

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015

840

Sehgal, L., N. Mohan and P.S. Sandhu, 2012. Quality
prediction of function based software using
decision tree approach. Proceeding of the
International Conference on Computer Engineering
and Multimedia Technologies (ICCEMT), pp:
43-47.

Shanthini, A. and R.M. Chandrasekaran, 2012.
Applying machine learning for fault prediction
using software metrics. Int. J. Adv. Res. Comput.
Sci. Softw. Eng., 2(6): 274-278.

Tosun Misirli, A. and A. Basar Bener, 2014. Bayesian
networks for evidence-based decision-making in
software engineering. IEEE T. Software. Eng.,
40(6).

Varade, S. and M. Ingle, 2013. Hyper-quad-tree based
K-means clustering algorithm for fault prediction.
Int. J. Comput. Appl., 76(5): 6-10.

Wang, J., B. Shen and Y. Chen, 2012. Compressed C4.
5 models for software defect prediction.
Proceeding of the 12th International Conference on
Quality Software (QSIC), pp: 13-16.

Xing, F., P. Guo and M.R. Lyu, 2005. A novel method
for early software quality prediction based on
support vector machine. Proceeding of the 16th
IEEE International Symposium on Software
Reliability Engineering, pp: 10-222.

Yang, Q., J. Guo, D. Zhang and C. Liu, 2011. Fault
diagnosis based on fuzzy C-means algorithm of the
optimal number of clusters and probabilistic neural
network. Int. J. Intell. Eng. Syst., 4(2): 51-59.

