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Abstract: This study addresses a shuffled frog leaping algorithm for solving the multi-objective reactive power 
dispatch problem in a power system. Optimal Reactive Power Dispatch (ORPD) is formulated as a nonlinear, multi-
modal and mixed-variable problem. The intended technique is based on the minimization of the real power loss, 
minimization of voltage deviation and maximization of the voltage stability margin. Generator voltages, capacitor 
banks and tap positions of tap changing transformers are used as optimization variables of this problem. A memetic 
meta-heuristic named as shuffled frog-leaping algorithm is intended to solve multi-objective optimal reactive power 
dispatch problems considering voltage stability margin and voltage deviation. The Shuffled Frog-Leaping Algorithm 
(SFLA) is a population-based cooperative search metaphor inspired by natural memetics. The algorithm contains 
elements of local search and global information exchange. The most important benefit of this algorithm is higher 
speed of convergence to a better solution. The intended method is applied to ORPD problem on IEEE 57 bus power 
systems and compared with two versions of differential evolutionary algorithm. The simulation results show the 
effectiveness of the intended method. 
 
Keywords: Multi objective optimization, reactive power dispatch, shuffled frog-leap algorithm 

 
INTRODUCTION 

 
In the present scenario, the load density of the 

system has increased abnormally and due to which the 
quality of power has decreased. The quality of power 
lacks due to the shortage of reactive power during the 
peak load periods which results in the reduction of 
overall voltage level. So the Reactive Power 
Optimization (RPO) and voltage control are the 
essential topic of research. The reactive power and 
voltage control improve the economy and security of 
the power system. The load bus voltages can be 
maintained within the permissible limits by reallocating 
reactive power generation in the system which is 
achieved by adjusting the transformer taps, generator 
voltages and capacitor banks. So the RPO problem 
deals with the minimization of the real power loss and 
improvement of the voltage profile of the system. 
Mathematically, RPO is a complicated, non-linear 
programming problem with non-linear objective 
functions, nonlinear equality and inequality constraints. 

Optimization deals with the problem of seeking 
solution over a set of possible choices to optimal 
criteria. If the criterion considered is one, it is a single 
objective optimization problem. If the number of 
criteria is more than one and if they are treated 
simultaneously, the problem is a Multi Objective 

Optimization (MOO) problem. The conventional RPO 
takes minimum power loss or voltage quality as major 
objective and concerns little over the voltage stability. 
So RPO problem is a single objective optimization 
problem. The conventional RPO problem is solved 
using the non-linear programming technique, sensitive 
and gradient based techniques and heuristic techniques. 
The non-linear programming has various drawbacks 
like insecure convergence, more execution time and 
complexity. The sensitive and gradient based 
techniques get trapped in the local minima which lead 
to the attainment of a solution which is not optimal. The 
heuristic technique which is a search based technique 
has attained great success in solving the RPO problem. 

In recent investigation in order to improve the 
system stability and to minimize loss in transmission 
lines, the RPO is formulated with multiple objectives 
like voltage deviation, voltage stability margin and 
minimization of active power loss. 

In the last decades, Computational intelligence-
based techniques have been proposed for the 
application of reactive power optimization, such as 
Differential Evolution (DE). Abido (2006) has 
formulated the optimal VAR dispatch problem as non 
linear constrained multi-objective optimization problem 
where the real power loss and voltage deviation are to 
be simultaneously minimized. Dai et al. (2009) 
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proposed a Seeker Optimization Algorithm (SOA) based method for ORPD, considering static voltage stability and 
voltage deviation. Jeyadevi et al. (2011) has addressed an application of Modified NSGA-II (MNSGA-II) by 
incorporating controlled elitism and Dynamic Crowding Distance (DCD) strategies in NSGA-II to multi-objective 
ORPD problem by minimizing real power loss and maximizing the system voltage stability. Jeyanthy and Devaraj 
(2010) proposed a hybrid particle swarm optimization algorithm for solving multi-objective real power optimization 
problem with minimization of loss and maximization of voltage stability margin are considered as objectives. 
Mancer et al. (2012) proposed a new variant of PSO algorithm with varying acceleration co-efficients to solve the 
MOORPF with power loss and voltage deviation as objective functions. Shi and Liu (2005) developed a fuzzy 
evaluation based multi objective model for reactive power optimization in power distributed networks. Xiong et al. 
(2008) proposed an Optimal Reactive Power Flow (ORPF) incorporating static voltage stability based on a Multi-
Objective Adaptive Immune Algorithm (MOAIA). Zhen et al. (2007) proposed the multi-objective optimization 
problem with real power losses and voltage stabilities to be simultaneously optimized with the Bacterial Swarming 
Algorithm (BSA). 

From the above review, certain limitations of the EP, TS and PSO based algorithms are summarized as follow: 

 

• The convergence is very slow, as these algorithms are random search techniques and they have to handle 

multiple objectives with enormous decision variables. 

• In most of the methods, the optimal solutions are obtained in any way by weakening one or more objectives. So, 

a diverse optimal solution has to be determined. 

 

It reveals that there exists a need for evolving a simple, effective and faster algorithm for solving Multi 

Objective optimal Reactive Power Dispatch (MORPO). The algorithm should obtain the optimum results with faster 

convergence. In this study, an attempt has been made to solve the MORPO by using shuffled frog leaping based 

algorithm which is able to find diverse solutions. 

 

METHODOLOGY 

 

Problem formulation: The multi-objective functions of the Optimal Reactive Power Dispatch include the technical 

and economic goals: 

 

• The economic goal is mainly to minimize the active power transmission loss. 

• The technical goals are to minimize the load bus voltage deviation from the ideal voltage and to improve the 

Voltage Stability Margin (VSM). 

 

Hence, the objectives of the Optimal Reactive Power Dispatch model in this study are active power loss (Ploss), 

voltage deviation (∆VL) and Voltage Stability Margin (VSM). 

 

The active power loss: The active power loss minimization in the transmission network can be defined as follows: 

 min ����� = 	
��


, ��
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where, 

f (x1,x2)  = The active power loss function of the transmission network  

(VG·KTQC)
T
  = The control variable vector  
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(VL QG)  = The dependent variable vector 

VL = The generator voltage (continuous) 
TK = The transformer tap (integer) 
QC  = The shunt capacitor/inductor (integer) 
VL  = The load bus voltage 
QG  = The generator reactive power 
k  = (i,  j), i E NB, J E Ni  
GK  = The conductance of branch k 
ɸij  = The voltage angle difference between bus i and j 
PGi  = The injected active power at bus i 
PDi  = The demanded active power at bus i 
Vi  = The voltage at bus i 
Gij = The transfer conductance between bus i and j 
Bij   = The transfer susceptance between bus I and j 
QGi = The injected reactive power at bus i 
QDi  = The demanded reactive power at bus 
NE  = The set of numbers of network branches  
NPQ  = The set of numbers of PQ buses 
NB  = Numbers of total buses 
Ni  = The set of numbers of buses adjacent to bus I 

(including bus i) 
N0  = The set of numbers of total buses excluding slack 

bus 
Nc  = The set of numbers of possible reactive power 

source installation buses 
NG  = The set of numbers of generator buses 
NT  = The set of numbers of transformer branches 
Sl  = The power flow in branch l 
 

The superscripts “min” and “max” denote the 
corresponding lower and upper limits, respectively. 
 
Voltage deviation: Treating the bus voltage limits as 
constraints in ORPD often results in all the voltages 
toward their maximum limits after optimization, which 
means the power system lacks the required reserves to 
provide reactive power during contingencies. One of 
the effective ways to avoid this situation is to choose 
the deviation of voltage from the desired value as an 
objective function i.e.: 
 

∑
=

−
=∆

LN

i L

ii
L

N

VV
V

1

*

min                                       (3) 

  
where, 
∆VL  = The per unit average voltage deviation 
NL = The total number of the system load buses 
Vi and Vi

*
  = The actual voltage magnitude and the 

desired voltage magnitude at bus i 
 
Voltage stability margin: Voltage stability problem 
has a close relationship with the reactive power of the 
system and the voltage stability margin is inevitably 
affected in optimal reactive power flow. Hence, the 
maximal voltage stability margin should be one of the 
objectives in ORPF. In the literature, the minimal eigen 
value of the non-singular power flow Jacobian matrix 

has been used by many researchers to improve the 
voltage stability margin. Here also, it is employed: 

max VSM = max (min|eig (jacobi)|)              (4) 

 
where, 
Jacobi  : The power flow Jacobian 

matrix  
eig (Jacobi)  : Returns all the eigen values 

of the Jacobian matrix 
min (eig (Jacobi)) : The minimum value of eig 

(Jacobi) 
max (min (eig (Jacobi))) : To maximize the minimal 

eigen value in the Jacobian 

matrix 

 
Multi-objective conversion: Considering different 
sub-objective functions have different ranges of 
function values, every sub-objective uses a transform to 
keep itself within (0, 1). The first two sub-objective 
functions, i.e., active power loss and voltage deviation, 
are normalized: 
 

    (5) 

 

      (6) 
 
where, the subscripts “min” and “max” in Eq. (5) and 

(6) denote the corresponding expectant minimum and 

possible maximum value, respectively. 

Since voltage stability margin sub-objective 

function is a maximization optimization problem, it is 

normalized and transformed into a minimization 

problem using the following equation: 

 

	@ = A 0                     ,	 �>C > �>C589EFGHIJKEFGEFGHIJKEFGH1L       MN�M                                ?  (7) 

 
where, the subscripts “min” and “max” in Eq. (7) 
denote the possible minimum and expectant maximum 
value, respectively.  

Control variables are self-constrained and 
dependent variables are constrained using penalty 
terms. Then, the overall objective function is 
generalized as follows: 
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where, 
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ωi (i = 1, 2, 3)  = The user-defined constants which are 
used to weight the contributions from 
different sub-objectives 

λV, λQ  = The penalty factors 
NV

lim
  = The set of numbers of load buses on 

which voltage outside limits  
NQ

lim
  = The set of numbers of generator buses 

on which injected reactive power 
outside limits 

 

∆VL and ∆QL are defined as:  

 

∆�P = Q�P5�6 − �P         ,	 �P < �P5�6�P − �P589         ,	 �P > �P589 ?                   (9) 

 

∆2& = Q2&5�6 − 2&         ,	 2& < 2&5�62& − 2&589        ,	 2& > 2&589 ?            (10) 

 

SHUFFLED FROG LEAPING ALGORITHM 

 
A memetic meta-heuristic called the Shuffled Frog-

Leaping Algorithm (SFLA) has been developed for 
solving combinatorial optimization problems. The 
SFLA is a population-based cooperative search 
metaphor inspired by natural memetics. The algorithm 
contains elements of local search and global 
information exchange. The SFLA consists of a set of 
interacting virtual population of frogs partitioned into 
different memeplexes. The virtual frogs act as hosts or 
carriers of memes where a meme is a unit of cultural 
evolution. The algorithm performs simultaneously an 
independent local search in each memeplex. The local 
search is completed using a particle swarm 
optimization-like method adapted for discrete problems 
but emphasizing a local search. To ensure global 
exploration, the virtual frogs are periodically shuffled 
and reorganized into new memplexes in a technique 
similar to that used in the shuffled complex evolution 
algorithm. In addition, to provide the opportunity for 
random generation of improved information, random 
virtual frogs are generated and substituted in the 
population. The algorithm has been tested on several 
test functions that present difficulties common to many 
global optimization problems.  
 

Implementation of SFLA: 
Global exploration: 

 
Step 0: Initialize: Select m and n, where m is the 

number of memeplexes and n is the number of 

frogs in each memeplex. Therefore, the total 

sample size F in the swamp is given by F = mn. 

Step 1: Generate a virtual population: Sample F 

virtual frogs U (1), U (2), ..., U (F) in the 

feasible space ΩcK
d
, where d is the number of 

decision variables (i.e., number of memotype 

(s) in a meme carried by a frog). The i
th

 frog is 

represented as a vector of decision variable 

values U (i) = (Ui
1
, Ui

2
, .. Ui

d
). Compute the 

performance value f (i) for each frog U (i). 
Step 2: Rank frogs: Sort the F frogs in order of 

decreasing performance value. Store them in an 
array X = {U (i), f (i), i = 1... F}, so that i = 1 
represents the frog with the best performance 
value. Record the best frog’s position PX in the 
entire population (F frogs) (where PX = U (1)). 

Step 3: Partition frogs into memeplexes: Partition 
array X into m memeplexes (Y1, Y2,.. Ym) each 
containing n frogs, such that:  

 
Yk = [U (j)

K
, f (j)

K
]               (11) 

  
where, U (j )

K
 = U (k + m (j - 1)),  f (j )

K 
= f (k + 

m (j - 1)),  (j = 1, ..., n; k = 1, ..., m)  (e.g.,  for  
m = 3, rank 1 goes to memeplex 1, rank 2 goes 
to memeplex 2, rank 3 goes to memeplex 3, 
rank 4 goes to memeplex 1 and so on). 

Step 4: Memetic evolution within each memeplex: 
Evolve each memeplex Y

K
, k = 1... m according 

to the frog-leaping algorithm outlined below. 
Step 5: Shuffle memeplexes: After a defined number 

of memetic evolutionary steps within each 
memeplex, replace Y1, ..., Ym into X, such  that  
X = {Y

k
, k = 1, ..., m}. Sort X in order of 

decreasing performance value. Update the 
population best frog’s position PX. 

Step 6: Check convergence: If the convergence 
criteria are satisfied, stop. Otherwise, return to 
step 3. Typically, the decision on when to stop 
is made by a pre specified number of 
consecutive time loops when at least one frog 
carries the ‘best memetic pattern without 
change. Alternatively, a maximum total number 
of function evaluations can be defined. 
 

Local exploration: 
Frog-leaping algorithm: In step 4 of the global search, 
evolution of each memeplex continues independently N 
times. After the memeplexes have been evolved, the 
algorithm returns to the global exploration for shuffling. 
Below are details of the local search for each 
memeplex. 
 
Step 0: Set im = 0 where im counts the number of 

memeplexes and will be compared with the 

total number m of memeplexes. Set iN = 0 

where iN counts the number of evolutionary 

steps and will be compared with the maximum 

number N of steps to be completed within each 

memeplex. 
Step 1: Set im = im+1. 
Step 2: Set iN = iN+1. 
Step 3: Construct a submemeplex: The frogs’ goal is 

to move towards the optimum ideas by 
improving their memes. As stated earlier, they 
can adapt the ideas from the best frog within the 
memeplex Yim or from the global best. 
Regarding the selection of the best memeplex, it 
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is not always desirable to use the best frog 
because the frogs’ tendency would be to 
concentrate around that particular frog which 
may be a local optima. So, a subset of the 
memeplex called a submemeplex is considered. 
The submemeplex selection strategy is to give 
higher weights to frogs that have higher 
performance values and less weight to those 
with lower performance values. The weights are 
assigned with a triangular probability 
distribution,  i.e.,  pj  =  2 (n + 1 - j) /n (n + 1),    
j = 1, ..., n, such that within a memeplex the 
frog with the best performance has the highest 
probability p1 = 2/ (n + 1) of being selected for 
the  submemeplex  and  the  frog  with  the  
worst performance has the lowest probability  
pn = 2/n (n + 1). Here, q distinct frogs are 
selected randomly from n frogs in each 
memeplex to form the submemeplex array Z. 
The submemeplex is sorted so that frogs are 
arranged in order of decreasing  performance  
(iq = 1, ..., q). Record the best (iq = 1) frog’s 
position and worst (iq = q) frog’s position in the 
submemeplex as PB and PW, respectively.  

Step 4: Improve The Worst Frog’s Position. The step 
and new position are computed for the frog with 
worst performance in the submemeplex by step 
size: 

 
S = min {int [rand (PB - PW)], Smax}  
for a positive step 
S = max {int [rand (PB - PW)], -Smax}  
for a negative step 

 
where, rand is a random number in the range (0, 
1) and Smax is the maximum step size allowed to 
be adopted by a frog after being infected. Note 
that the step size has dimensions equal to the 
number of decision variables. The new position 
is then computed by: 

 
U (q) = PW + S                            (12) 

  
If U (q) is within the feasible space ΩcK

d
, 

compute the new performance value f (q). 
Otherwise go to step 5. If the new f (q) is better 
than the old f (qi: i.e., if the evolution produces 
a benefit, then replace the old U (q) with the 
new U (q) and go to step 7. Otherwise go to 
step 5.  

Step 5: If step 4 cannot produce a better result, then the 
step and new position are computed for that 
frog by step size: 

 
S = min {int [rand (PX - PW)], Smax} for a 
positive step 
S = max {int [rand (PX - PW)], -Smax} for a 
negative step 
And the new position is computed by Eq. (11). 
If U (q) is within the feasible space ΩcK

d
, 

compute the new performance value f (q); 
otherwise go to step 6. If the new f (q) is better 
than the old f (q), i.e., if the evolution produces 
a benefit, then replace the old U (q) with the 
new U (q) and go to step 7. Otherwise go to 
step 6. 

Step 6: Censorship: If the new position is either 
infeasible or not better than old position, the 
spread of defective meme is stopped by 
randomly generating a new frog r at a feasible 
location to replace the frog whose new position 
was not favorable to progress. Compute f (r) 
and set U (q) = r and f (q) = f (r). 

Step 7: Upgrade the memeplex: After the memetic 
change for the worst frog in the submemeplex, 
replace Z in their original locations in Y

im
. Sort 

Y
im
 in order of decreasing performance value. 

Step 8: If iN<N, go to step 2. 
Step 9: If im<m, go to step 1. Otherwise return to the 

global search to shuffle memeplexes. 
 
Implementation of SFLA for reactive power 
optimization: The intended approach to solve multi 
objective ORPD problem is described in the following 
steps: 
 
Step 1: Read the parameters of power system and the 

proposed algorithm and specify the lower and 
upper limits of each variable. 

Step 2: Initialize Number of generation (iter) = 30, 
Population size (p) = 50, Number of 
memeplexes (m) = 5 and Iterations within each 
memeplex = 5. 

Step 3: Take iter = 0. 
Step 4: Generate population (p) randomly. 
Step 5: Calculate the fitness values of (p) using the 

objective function in (8) based on the results of 
Newton-Raphson power flow analysis. 

Step 6: Find out “personal best (Pbest)” of all frog and 
“global best (Gbest)” frog from their fitnesses. 

Step 7: Sort P in order of decreasing performance 
value and Partition p into m memeplexes 

Step 8: Shuffle the memeplexes and Update the 
population best frog’s position Px. 

Step 9: If the convergence criteria are satisfied, stop. 
Otherwise, return to step 6. 

Step 10: Let iter = iter+1 
Step 11: Update the new position of P. 
Step 12: Calculate the fitness values of the new 

positions using the objective function based on 
the Newton-Raphson power flow analysis 
results. 

Step 13: For each frog if current fitness (P) is better 
than Pbest then Pbest = P. 

Step 14: Set best of Pbest as Gbest. 
Step 15: Go to step no. 10, until maximum no of 

iterations is completed. 
Step 16: Coordinate of Gbest particle gives optimized 

values of control variables and its fitness gives 

minimized value of losses. 
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Table 1: Values of control variable after optimization by various 
methods for IEEE 57-bus system (p.u.) 

Variables Base case SFLA L-DE L-SACP-DE 

VG1 1.040 1.036817 1.03970 0.9884 
VG2 1.010 1.026660 1.04630 1.0543 
VG3 0.985 1.030133 1.05110 1.0278 
VG6 0.980 1.033903 1.02360 0.9672 
VG8 1.005 1.048680 1.05380 1.0552 
VG9 0.980 1.021121 0.94518 1.0245 
VG12 1.015 1.041640 0.99078 1.0098 
T4-12 0.970 0.961250 1.02000 1.0500 
T4-18 0.978 1.006298 0.91000 1.0500 
T21-20 1.043 0.972440 0.97000 0.9500 
T24-26 1.043 0.966793 0.91000 0.9800 
T7-29 0.967 0.974333 0.96000 0.9700 
T34-32 0.975 0.955757 0.99000 1.0900 
T11-41 0.955 0.992520 0.98000 0.9200 
T15-45 0.955 0.962765 0.96000 0.9100 
T14-46 0.900 0.943377 1.05000 1.0800 
T10-51 0.930 0.978943 1.07000 0.9900 
T13-49 0.895 0.986010 0.99000 0.9100 
T11-43 0.958 0.969491 1.06000 0.9400 
T40-56 0.958 1.019358 0.99000 0.9900 
T39-57 0.980 1.027978 0.97000 0.9600 
T9-55 0.940 1.028938 1.07000 1.1000 
QC18 0 0.044356 0 0 
QC25 0 0.038841 0 0 
QC53 0 0.018498 0 0 

 

 
 

Fig. 1: Flowchart of the SFLA 

Table 2: The computing time for various algorithms on IEEE 57-bus 
system over 30 runs 

Algorithm SFLA L-DE L-SACP-DE 

Shortest time (sec) 177.46 1210.73 1212.95 
Longest time (sec) 246.49 1239.86 1235.03 
Average time (sec) 225.58 1224.27 1221.51 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Generator voltage profiles for various algorithms on 

IEEE 57-bus 

 
SIMULATION RESULTS 

 
To evaluate the effectiveness and efficiency of the 

proposed SFLA based reactive power optimization 
approach, the standard IEEE 57-bus power systems are 
used as the test systems. 
 
IEEE 57-bus power system: The IEEE 57-bus system 
consists of seven generators, 80 lines in which 15 lines 
are tap setting transformers with discrete operating 
values and three capacitor banks. Seven buses are 
selected as PV-buses and Vθ-bus as follows: PV-buses: 
bus 2, 3, 6, 8, 9, 12; Vθ-bus: bus 1, respectively. The 
others are PQ-buses. At initial operating condition, 
active power loss is 0.285654 p.u. The search space of 
this case study has 25 dimensions, including seven 
generator voltages, 15 transformer taps and three 
capacitor banks. 

Table 1 indicates the values of control variable 
obtained by different algorithms over 30 independent 
runs. Furthermore, average computing time of SFLA is 
better than the two versions of DE. Also, it can be seen 
that the shortest, average and longest computing time of 
SFLA is less than that of other algorithms are shown in 
Table 2. Figure 1 to 3 depict control variables profile of 
different algorithms. The results are given in Table 3. 
From Table 3, it can be seen that SFLA converges in 30 
iterations achieving the least real power loss of 27.1446 
MW in less time than all the other listed algorithms 
(Fig. 4). 

 
Table 3: The best dispatch solutions for various algorithms on IEEE 57-bus system (p.u.) 

Algorithms ∑PG ∑QG Ploss Qloss %Ploss VSM ∆VL 

SFLA 12.7794 3.3272 0.271446 -1.1816 4.6055 0.21650 0.1584
L-DE 12.7999 3.3656 0.291864 -1.2158 -1.2380 0.17012 2.8865
L-SACP-DE 12.7812 3.2085 0.273183 -1.1868 4.0185 0.18300 4.2829
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Fig. 3: Transformer tap ratio profiles for various algorithms 

on IEEE 57-bus 
 

 
 
 
 

 

 

 

 

 

 
 

 

 

 

Fig. 4: Capacitor bank profiles for various algorithms on 

IEEE 57-bus 

 

CONCLUSION 

 

In this study, a shuffled frog leaping algorithm to 

solve optimal reactive power dispatch problem, 

considering various generator constraints, has been 

successfully applied. The proposed method formulates 

constrained problem with competing objectives namely; 

minimization of the real power loss, minimization of 

voltage deviation and maximization of the voltage 

stability margin. This method shows good  performance 

for the voltage stability enhancement of large complex 

power system networks. Experimental results indicate 

that the shuffled frog leaping algorithm is more 

effective in global search exploration. 
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