
Research Journal of Applied Sciences, Engineering and Technology 11(1): 63-69, 2015

DOI: 10.19026/rjaset.11.1676

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: February 6, 2015 Accepted: March 1, 2015 Published: September 05, 2015

Corresponding Author: M. Anbu, Department of Information Technology, St. Joseph’s Engineering College, Chennai, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

63

Research Article

Investigation of Software Defect Prediction Using Data Mining Framework

1
M. Anbu and

2
G.S. Anandha Mala

1
Department of Information Technology, St. Joseph’s Engineering College,

2
Department of Computer Science and Engineering, Easwari Engineering College, Chennai, India

Abstract: A software defect is a error, failure, fault in a computer program or system producing an incorrect or
unexpected result, or causing it to behave in an unintended way. Software Defect Prediction (SDP) locates defective
modules in software. The final product should have null or minimal defects to produce high quality software.
Software defect detection at the earliest stage reduces development cost, reworks effort and improves the quality of
software. In this study, the efficiency of different classifiers such as Naïve Bayes, Support Vector Machine (SVM)
and K-Nearest Neighbor (KNN) are evaluated for SDP.

Keywords: Naïve bayes, K-Nearest Neighbor (KNN), Partial decision Tree Algorithm (PART), Software Defect

Prediction (SDP), software quality, Support Vector Machine (SVM)

INTRODUCTION

Software defects are errors, flaws, bugs, mistakes,

failures or faults in computer programs or systems that
generate inaccurate/unexpected outcome, or preclude
software from its intended behavior. A project team
aspires to create quality software products with null or
minimal defects. High risk components of a software
project need to be detected at the earliest stage of
software life cycle to enhance the software quality.
Software defects, affect quality and time. Also,
identifying and rectifying defects are time consuming
and expensive. It is impractical to eliminate all defects,
but reducing defects magnitude and adverse effects on
projects is possible (Rawat and Dubey, 2012). A
software defect is a flaw or imperfection in a software
work product or software process. A software process is
an activity, method, practice and transformation that
people use to develop and maintain software work
products (Clark and Zubrow, 2001).

Software Defect Prediction (SDP) locates defective

modules in software. The final product should have as

few defects as possible to ensure high quality software.

Software defect detection at the earliest stage leads to

reduce development cost, rework efforts and reliable

software. Thus defect prediction study is important to

ensure software quality. The most discussed problems

in software quality and software reliability is SDP. As

Boehm says, finding and fixing a problem after delivery

is 100 times more expensive than fixing it in the

requirement and design phase. Also, software projects

spend 40 to 50% of effort in avoidable rework (Boehm

and Basili, 2007).

Software is a complex entity of various modules

with varied defect occurrence possibility range.

Efficient and timely defect occurrence prediction allows

software project managers to use people, cost and time

for improved quality assurance. Defects in software,

results in poor quality software and leads to software

project failure. Occasionally, it is impossible to identify

defects and fix them during development and so they

are handled when noticed by team members. Hence,

defect-prone software modules should be predicted

before deployment to plan better maintenance

strategies. Early detection of defect prone software

module knowledge ensures an efficient process

improvement plan within stipulated cost and time. This

results in better software release and high customer

satisfaction. Accurate defect measurement and

prediction is crucial in software as it is an indirect

measurement based on many metrics (Nam, 2010).

A common SDP process based on machine learning

models is seen in Fig. 1. The first step in building a

prediction model is to generate instances from software

archives like version control systems, e-mail archives

and issue tracking systems. Each instance represents a

system, class, function (method), a software component

(or package), source code file and/or code change based

on prediction granularity. An instance, has many

metrics (features) culled from software archives and

labeled with buggy/clean or number of bugs. For

example, instances generated from software archives

are labeled with ‘B’ (buggy), ‘C’ (clean), or the number

of bugs (Verner and Tate, 1992) in Fig. 1.

Res. J. App. Sci. Eng. Technol., 11(1): 63-69, 2015

64

Fig. 1: Common process of software defect prediction

Software metrics are defined by measuring some

property of a software portion or its specifications.
Software metrics ensure quantitative method to assess
software quality. Software metrics are defined as
"continuous application of measurement based
techniques to software development and its products to
ensure supply of meaningful and timely Management
Information with use of techniques to improve products
and process" (Rawat et al., 2012). Software metrics is
used for measuring the process and product of software.
Various software metrics are classified as Software
Product metrics, Software Process metrics and Software
Project metrics. Process metrics highlights the software
development process. It aims to measure the process
duration, cost and type of method used. Process metrics
augment software development and maintenance.
Examples include efficacy of defect removal during
development, patterning of testing defect arrival and fix
process response time. Project metrics monitor the
project situation and status. Project metrics preclude
problems or risks by calibrating projects and optimize
the software development plan. Project metrics describe
project characteristics and execution. Measuring the
number of software developers, staffing pattern over a
software life cycle, cost, schedule and productivity are
the examples of project metrics. Product metrics
describe the software product attributes during any
development phase. Product metrics measure program
size, software design complexity, performance,
portability, maintainability and product scale. Product
metrics presume and invent product quality. Product
metrics measure the medium or final product (Rawat
et al., 2012). These metrics play an important role in
classifying the modules as defective or non-defective.

In this study, the efficiency of the classifiers in
classifying defective modules are evaluated. A KC1
dataset from the PROMISE software dataset repository
is used for evaluation.

LITERATURE REVIEW

An association rule mining based method to predict

defect associations and defect correction effort was
presented by Song et al. (2006) to help developers
detect software defects and assists project managers to

allocate testing resources effectively. This study applied
the new method to the SEL defect data of more than
200 projects over more than 15 years. Results reveal
that for defect association prediction, accuracy is very
high and false-negative rate very low. Likewise, for
defect correction effort prediction, accuracy for defect
isolation effort prediction and defect correction effort
prediction are high. This study compared defect
correction effort prediction method with other methods-
PART, C4.5 and Naive Bayes and showed that
accuracy improved by 23%. Support and confidence
levels impact on prediction accuracy was evaluated,
along with the false-negative rate, false-positive rate
and rules.

Various classifications and clustering methods
aimed at predicting software defects was proposed by
Chug and Dhall (2013). It analyzed classification and
clustering techniques to predict software defects.
Performance of 3 data mining classifier algorithms
called J48, Random Forest and Naive Bayesian
Classifier based on criteria like ROC, Precision, MAE
and RAE were evaluated. Clustering technique using k-
means are then applied on Hierarchical Clustering and
Make Density Based Clustering algorithm on the data
set. Evaluation of clustering is based on criteria like
Cluster Instance, Time Taken, Incorrectly Clustered
Instance, Number of Iterations and Log Likelihood. An
exploration of 10 real time NASA software projects
defect datasets followed by applications finally leads to
defect prediction.

A new SDP model using Particle Swarm
Optimization (PSO) and Support Vector Machine
(SVM) named P-SVM model was proposed by Can
et al. (2013). The authors use PSO algorithm to
calculate best SVM parameters and adopts optimized
SVM model to predict software defect. P-SVM model
and three other prediction models predict software
defects in JM1 data set on an experimental basis, the
results showing that P-SVM has a higher prediction
accuracy compared to BP Neural Network model, SVM
and GA-SVM models.

A technique to select best attributes set to improve
SDP accuracy was proposed by Khan et al. (2014).
Software attribute characteristics influence the defect
prediction model’s performance and effectiveness. The

Res. J. App. Sci. Eng. Technol., 11(1): 63-69, 2015

65

new method is evaluated using NASA metric data
repository data sets and demonstrates acceptable
accuracy using a simple algorithm.

The best size of feature subset to build a prediction

model to prove that feature selection establishes SDP

model was discussed by Wang et al. (2012a). Mutual

information is an outstanding relevance indicator

between variables and used as a measurement in the

new feature selection algorithm. A nonlinear factor for

evaluation function was introduced for feature selection

to improve performance. The results of the feature

selection algorithm were validated by varying machine

learning methods. Experimental results reveal that all

classifiers achieved high accuracy.

Three new defect prediction models based on C4.5

model were proposed by Wang et al. (2012b).

Spearman's rank correlation coefficient was introduced

to choose the root node of the decision tree which

improves models on defect prediction. An experimental

scheme was designed to verify the improved model's

effectiveness and this paper compared prediction

accuracies of existing and improved models. Results

showed that improved models reduced decision tree

size by 49.91% on average and increased prediction

accuracy by 4.58 and 4.87% on two modules in the

experiment.

A defect predictor based on Naive Bayes theory

was presented by Tao and Wei-Hua (2010), analyzed

their difference estimation methods and algorithm

complexity. This study concluded that the best defect

predictor to be Multi-variants Gauss Naive Bayes

(MvGNB) through evaluation and compared it with a

decision tree learner J48. Results on benchmarking

MDP data sets proved that MvGNB was useful to

predict defects.

Different feature selection and dimensionality

reduction methods were used to determine most

important software metrics by Xia et al. (2013). Three

different classifiers, namely Naïve Bayes, SVM and

decision tree were used. On the NASA data,

comparative experiment results show that instead of 22

or more metrics, less than 10 metrics ensure better

performance.

The problem of defect prediction was focused on

by Czibula et al. (2014) which was important during

software maintenance and evolution. As conditions

which result in software modules having defects are

hard to identify, machine learning based classification

models was used to offset this issue. This study

proposed a new relational association rules mining

based classification model which in turn is based on the

discovery of relational association rules to predict

whether a software module is defective.

The positive effects of combining feature selection

and ensemble learning on defect classification

performance were demonstrated by Laradji et al.

(2014). Added to the efficient feature selection, a new

two-variant (with/without feature selection) ensemble

learning algorithm was proposed to ensure robustness

of data imbalance and feature redundancy. This study

shows software dataset features which are carefully

chosen for defective components accurate

classification. Further, tackling software data issues

mentioned above, with the new combined learning

model lead to remarkable classification performance

and paved the way for successful quality control.

A new algorithm called Transfer Naive Bayes

(TNB) proposed by Ma et al. (2012), used information

of all training data features. This solution estimates test

data distribution and transfers cross-company data

information to training data weights. The defect

prediction model is built on the weighted data. This

article presents a theoretical analysis of comparative

methods, showing data sets’ experiment results from

various organizations. It indicates that TNB is more

accurate regarding AUC (Area Under receiver

operating characteristic Curve), with reduced runtime

than state of the art methods.

Three cost-sensitive boosting algorithms to boost

neural networks for SDP were presented by Zheng

(2010). Based on threshold-moving, the first algorithm

tries to move the classification threshold to not-fault-

prone modules as more fault-prone modules are

classified correctly. The other two weight-updating

based algorithms incorporate misclassification costs

into the boosting procedure’s weight-update rule so that

algorithms boost more weights on samples associated

with misclassified defect-prone modules. Performances

of the three algorithms were evaluated using 4 NASA

project datasets regarding a singular measure,

Normalized Expected Cost of Misclassification

(NECM). Experiments suggested that threshold-moving

is the best choice to build cost-sensitive SDP models

with boosted NNs, among the three algorithms.

Combining meta-heuristic optimization methods

and bagging technique to improves SDP performance

was proposed by Wahono et al. (2014). Meta-heuristic

optimization methods (Genetic Algorithm (GA) and

PSO) were applied to handle feature selection and

bagging technique is used to deal with class imbalance

issues. Results indicated that new methods improved

classifier performance greatly. Based on comparisons, it

is concluded that there is no great difference between

PSO and GA when used as feature selection for

classifiers in SDP.

A new Two-Stage Cost-Sensitive learning (TSCS)

method for SDP, using cost information in the

classification and feature selection stages was proposed

by Liu et al. (2014). For feature selection, it specifically

developed 3 new cost-sensitive feature selection

algorithms, Cost Sensitive Variance Score (CSVS),

Cost-Sensitive Laplacian Score (CSLS) and Cost-

Sensitive Constraint Score (CSCS), by including cost

information into traditional feature selection algorithms.

Res. J. App. Sci. Eng. Technol., 11(1): 63-69, 2015

66

The new methods were evaluated in NASA projects 7

real data sets. Results suggest that TSCS method

achieved better performance in SDP compared to

current single-stage cost-sensitive classifiers. This

experiment also reveals that new cost-sensitive feature

selection methods outperform conventional cost-blind

feature selection methods, validating the use of cost

information at the feature selection stage.

Four semi-supervised classification methods for

semi-supervised defect prediction was evaluated by

Catal (2014). Low-Density Separation (LDS), SVM,

Expectation-Maximization (EM-SEMI) and Class Mass

Normalization (CMN) methods were investigated on

NASA data sets including CM1, KC1, KC2 and PC1.

Results proved that SVM and LDS algorithms

outperformed CMN and EM-SEMI algorithms. LDS

algorithm performs better than SVM in large data sets.

When there is limited fault data, LDS-based prediction

approach is suggested for SDP.

MATERIALS AND METHODS

Dataset: CM1, PC1, KC1 and KC2 dataset are from the

PROMISE software dataset repository and are widely

used for evaluating SDP. This study used these datasets

so that the predictive model’s performance could be

compared. Table 1 shows the dataset of software

defects.

This dataset has many software metrics like Line of

Code, number of operands and operators, Program

length, Design complexity, effort and time estimator

and other metrics which identify software with defects

(Agarwal and Tomar, 2014).

The KC1 data is obtained from a science data

processing project coded in C++, containing 2108

modules (Challagulla et al., 2008). NASA’s Metric

Data Program (MDP) data repository’s KC1 data set

comprises logical groups of Computer Software

Components (CSCs) in a large ground system. KC1 has

43,000 lines of code, coded in C++ the data set having

2,107 instances (modules). In these instances, 325 have

one or more faults and 1,782 have nil faults. A

module’s maximum number of faults is seven. Defect

prediction models have independent variables as

product and process metrics and a dependent variable

indicates whether a module has a fault. In this data set,

class_label is the dependent variable and the rest

independent variables (Gayathri and Sudha, 2014).

KC1 dataset is a NASA Metrics Data Program

(Shirabad and Menzies, 2005) verifying/improving

predictive software engineering models. KC1 is a C++

system implementing storage management for ground

data receipt/processing containing of McCabe and

Halstead features code extractors and module based

measures.

Table 1: Details of software defect dataset

Dataset Language No. of modules Defective (%)

CM1 C 496 9.7
PC1 C 1,107 6.9
KC1 C++ 2,109 15.5
KC2 C++ 522 20.5

Defect detectors are calculated as:

a = Classifier predicts no defects and module has no

error
b = Classifier predicts no defects and module has

error
c = Classifier predicts some defects and module has

no error
d = Classifier predicts some defects and module has

error

Accuracy, probability detection (pd) or recall,
precision (prec), probability of false alarm (pf) and
effort are calculated as:

a d
Accuracy

a b c d

+
=

+ + + (1)

d
recall

b d
=

+ (2)

c
pf

a c
=

+ (3)

d
prec

c d
=

+ (4)

. .c LOC d LOC
effort

TotalLOC

+
=

 (5)

KC1 dataset has 2109 instances and 22 varied
attributes including 5 different LOC, 3 McCabe
metrics, 12 Halstead metrics, a branch count and 1
goal-field. Dataset’s attribute information is: total
operands, design complexity, McCabe's Line count of
Code (LOC), cyclomatic complexity, program length,
effort, Halstead, class and others. Some samples from
the dataset are given:

Example 1 : 1.1, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3, 1.3,

1.3, 1.3, 1.3, 2, 2, 2, 2, 1.2, 1.2, 1.2, 1.2,
1.4, false

Example 2 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, true

Example 3 : 83, 11, 1, 11, 171, 927.89, 0.04, 23.04,

40.27, 21378.61, 0.31, 1187.7, 65, 10, 6,

0, 18, 25, 107, 64, 21, true

Classifiers: Classification divides data samples into

target classes. For example, a software module is

Res. J. App. Sci. Eng. Technol., 11(1): 63-69, 2015

67

categorized as “defective” and “not-defective” using

classification. In Classification, class categories are

already known and so is a supervised learning approach

(Han and Kamber, 2006). There are two classification

methods: Binary and Multilevel. Binary classification

divides a class only into two categories “defective” and

“not-defective”. Multi-level classification is used when

there are more than two classes and they are split into

“highly complex”, “complex” or “simple.” Learning

and Testing are two phases of a classification approach:

hence, it divides a dataset into two parts: training and

testing. Approaches like cross fold and Leave-one-out

partition the dataset. During the learning phase, a

classifier is learned using training dataset and evaluated

with a testing dataset. Varied classification techniques

are available and classifiers used for this are discussed

below (Ma et al., 2012).

Support Vector Machine (SVM): SVM divides data
samples of two classes by determining a hyper-plane in
original input space maximizing their separation. SVM
works well for classification of data samples
inseparable linearly by using the kernel function theory.
Many kernel functions for example Gaussian,
Polynomial and Sigmoid are available and are used to
map data samples to higher dimensional feature space.
SVM then determines a hyper-plane in the feature space
to divide data samples of various classes. This is a
better choice for linearly and nonlinearly separable data
classification. SVM has many advantages like ensuring
a global solution for data classification. It generates a
unique global hyper-plane to separate different class
data samples rather than local boundaries as compared
to existing data classification approaches. As SVM
follows Structural Risk Minimization (SRM) principle,
it reduces risk during training and enhances its
generalization capability (Xing et al., 2005).

SVM uses machine learning technique and Method
level metrics. SVM is a supervised learning models
with associated learning algorithms analyzing data and
recognizing patterns for classification and regression
analysis (Challagulla et al., 2008). SVM was
successfully solved classification and regression
problems in applications. SVM’s capability in
predicting defect prone software modules and
comparing its performance against 8 statistical and
machine learning models in the context of four NASA
datasets is studied. Results indicate that SVM
prediction performance is better than the models
compared. SVM’s advantage is ensuring better
performance and its disadvantage is that it does not
work well on public datasets (Singh et al., 2010). SVM
was used in bioinformatics, image classification and
handwriting recognition. SVM is used for data
classification and is robust in nature than other software
quality prediction techniques. It adapts to modeling
non-linear functional relationships, achieves improved
performance and is an efficient software quality

prediction technique. To minimize cost and improve
software testing process effectiveness, researchers used
SVM on a Data set from NASA’s Metrics Data
Program (MDP) data repository (Voulgaris and
Magoulas, 2008). The advantage of SVM is that they
provide better performance. The main disadvantage of
SVM is that it does not work well on public datasets.

K-Nearest Neighbor (KNN): This classifier’s working

is based on a voting system. KNN locates new or

unidentified data sample aided by earlier identified data

samples, called nearest neighbor and samples being

assigned using voting strategy. More than one nearest

neighbor participates in data samples classification.

KNN learning is slow and hence is called Lazy Learner.

KNN technique is used in clustering and classification.
An algorithm in k Nearest Neighbor classification

(Sridhar and Babu, 2012), finds a set of k objects in
training set close to the input and classifies it based on
the majority of that group class. The elements needed
for this approach are: distance metrics, labeled objects
set and a number of k.

PART: PART is a partial decision tree algorithm is the

extension of RIPPER and C4.5 algorithms. PART

algorithm need not perform global optimization to

produce the appropriate rules. Class for generating a

PART decision list use separate-and-conquer method.

DTNB: Decision Tree and Naïve Bayes algorithm uses
a decision table/naive bayes hybrid classifier. At each
point during the search, the algorithm evaluates the
advantage of dividing the attributes into two disjoint
subsets. Initially all attributes are modeled by decision
table initially. A forward selection search is used where
each attribute is modeled by Naïve Bayes and
remaining by decision table. At each step, the algorithm
also dropping an attribute entirely from the model.

NNge: Nearest-neighbor-like algorithm using non-
nested generalized exemplars which can be viewed as
if-then rules.

Naïve Bayes: Naive Bayesian classifier is based on
Bayes theorem with independence assumptions
between the predictors. Naive Bayesian model is easy
to build, having no complicated iterative parameter
estimation making it specifically useful for large
datasets. Despite simplicity, Naive Bayesian classifier
often does well and is used as it outperforms
sophisticated classification methods.

Bayes net: Bayes Network classifier uses a variety of
search algorithms and quality measures. It supports
different data structures like network structure,
conditional probability distributions.

NB updateable t: Naive Bayes classifier uses estimator
classes. It is the updateable version of Naïve Bayes.

Res. J. App. Sci. Eng. Technol., 11(1): 63-69, 2015

68

Fig. 2: Classification accuracy for different classifiers

Fig. 3: Precision and recall for different classifiers

Table 2: Classification accuracy, precision, recall for different

classifiers using K folds cross validation

Algorithm

Classification

accuracy Precision Recall

SVM 86.27 0.822 0.863

KNN 85.51 0.845 0.855

PART 85.13 0.890 0.955

DTNB 84.13 0.894 0.945

NNge 83.61 0.885 0.943

Complement NB 81.71 0.903 0.910

NB simple 80.90 0.902 0.905

NB 80.85 0.806 0.809

NB updateable 80.57 0.902 0.905

Bayes net 66.88 0.944 0.711

This classifier uses a default precision of 0.1 for

numeric attributes with zero training instances.

NB simple: It is a Class for building and using a simple

Naive Bayes classifier and numeric attributes are

modelled by a normal distribution.

RESULTS AND DISCUSSION

In this study experiment are conducted for

obtaining classification accuracy, precision and recall

for classifiers such as Naïve Bayes, SVM and KNN.

Table 2 and Fig. 2 shows the results of accuracy,

precision and recall for different classifiers.

For Classification accuracy, SVM classifier

performs better than all the other classifiers. For

Classification accuracy, SVM classifier performs better

by 25.32% than Bayes Net and by 6.83% than NB

Updateable (Fig. 3).

For Precision, Bayes Net classifier performs better

than all the other classifiers. For Precision, Bayes Net

classifier performs better by 15.77% than NB and by

13.82% than SVM. For Recall, PART classifier

performs better than all the other classifiers. For Recall,

PART classifier performs better by 29.29% than Bayes

Net and by 16.55% than NB.

CONCLUSION

In this study, experiments are carried out for

analyzing the defect prediction using different types of

classifiers such as NB, SVM, KNN etc. The classifiers

are evaluated for KC1 dataset. The classification

accuracy of the SVM classifier performs better when

compared to other classifiers. The study can be

extended to improve the classifier for SDP which

outperforms well for classification accuracy, precision

and recall.

REFERENCES

Agarwal, S. and D. Tomar, 2014. A feature selection

based model for software defect prediction. Int.

J. Adv. Sci. Technol., 65: 39-58.

Boehm, B. and V.R. Basili, 2007. Software defect

reduction top 10 list. Software Eng. Barry

W. Boehm's Lifetime Contribut. Software Develop.

Manage. Res., 34(1): 75.

Can, H., X. Jianchun, Z. Ruide, L. Juelong, Y. Qiliang

and X. Liqiang, 2013. A new model for software

defect prediction using particle swarm optimization

and support vector machine. Proceeding of 25th

IEEE Chinese Control and Decision Conference

(CCDC, 2013), pp: 4106-4110.

Catal, C., 2014. A comparison of semi-supervised

classification approaches for software defect

prediction. J. Intell. Syst., 23(1): 75-82.

Challagulla, V.U.B., F.B. Bastani, I.L. Yen and

R.A. Paul, 2008. Empirical assessment of machine

learning based software defect prediction

techniques. Int. J. Artif. Intell. T., 17(02):

389-400.

Chug, A. and S. Dhall, 2013. Software defect prediction

using supervised learning algorithm and

unsupervised learning algorithm. Proceeding of 4th

International Conference Confluence 2013: The

Next Generation Information Technology Summit,

pp: 173-179.

Res. J. App. Sci. Eng. Technol., 11(1): 63-69, 2015

69

Clark, B. and D. Zubrow, 2001. How good is the
software: A review of defect prediction
techniques? Sponsored by the US Department of
Defense. Carnegie Mellon University, Pittsburgh,
PA.

Czibula, G., Z. Marian and I.G. Czibula, 2014.
Software defect prediction using relational
association rule mining. Inform. Sci. Int. J.,
264: 260-278.

Gayathri, M. and A. Sudha, 2014. Software defect
prediction system using multilayer perceptron
neural network with data mining. Int. J. Recent
Technol. Eng. (IJRTE), 3(2).

Han, J. and M. Kamber, 2006. Data Mining, Southeast
Asia Edition: Concepts and Techniques. Morgan
Kaufmann, pp: 770.

Khan, J.I., A.U. Gias, M. Siddik, M. Rahman,
S.M. Khaled and M. Shoyaib, 2014. An attribute
selection process for software defect prediction.
Proceeding of the International Conference
on Informatics, Electronics and Vision (ICIEV,
2014), pp: 1-4.

Laradji, I.H., M. Alshayeb and L. Ghouti, 2014.
Software defect prediction using ensemble learning
on selected features. Inform. Software Tech., 58:
388-402.

Liu, M., L. Miao and D. Zhang, 2014. Two-stage cost-
sensitive learning for software defect
prediction. IEEE T. Reliab., 63(2): 676-686.

Ma, Y., G. Luo, X. Zeng and A. Chen, 2012. Transfer
learning for cross-company software defect
prediction. Inform. Software Tech., 54(3):
248-256.

Nam, J., 2010. Survey on Software Defect Prediction.
Rawat, M.S. and S.K. Dubey, 2012. Software defect

prediction models for quality improvement: A
literature study. Int. J. Comput. Sci., 9(5).

Rawat, M.S., C.O.E.T. MGM’s, A. Mittal and
S.K. Dubey, 2012. Survey on impact of software
metrics on software quality. Int. J. Adv. Comput.
Sci. Appl., 3(1).

Shirabad, J.S. and T.J. Menzies, 2005. The PROMISE

repository of software engineering databases.

School of Information Technology and

Engineering, University of Ottawa, Canada.

Singh, Y., A. Kaur and R. Malhotra, 2010. Prediction of

fault-prone software modules using statistical and

machine learning methods. Int. J. Comput.

Appl., 1(22): 8-15.

Song, Q., M. Shepperd, M. Cartwright and C. Mair,

2006. Software defect association mining and

defect correction effort prediction. IEEE

T. Software Eng., 32(2): 69-82.

Sridhar, S.M. and B.R. Babu, 2012. Evaluating the

classification accuracy of data mining algorithms

for anonymized data. Int. J. Comput. Sci.

Telecommun., 3(8).

Tao, W. and L. Wei-Hua, 2010. Naïve bayes

software defect prediction model. Proceeding of

International Conference on Computational

Intelligence and Software Engineering (CiSE), pp:

1-4.

Verner, J. and G. Tate, 1992. A software size

model. IEEE T. Software Eng., 18(4): 265-278.

Voulgaris, Z. and G.D. Magoulas, 2008. Extensions of

the k nearest neighbour methods for classification

problems. Proceeding of 26th IASTED

International Conference on Artificial Intelligence

and Applications, CD Proceedings ISBN: 978-0-

88986-710-9, pp: 23-28.

Wahono, R.S., N. Suryana and S. Ahmad, 2014.

Metaheuristic optimization based feature selection

for software defect prediction. J. Software, 9(5):

1324-1333.

Wang, J., B. Shen and Y. Chen, 2012b. Compressed

C4. 5 models for software defect prediction.

Proceeding of 12th International Conference

on Quality Software (QSIC), pp: 13-16.

Wang, P., C. Jin and S.W. Jin, 2012a. Software defect

prediction scheme based on feature selection.

Proceeding of International Symposium

on Information Science and Engineering (ISISE,

2012), pp: 477-480.

Xia, Y., G. Yan and Q. Si, 2013. A study on the

significance of software metrics in defect

prediction. Proceeding of 6th International

Symposium on Computational Intelligence and

Design (ISCID, 2013), 2: 343-346.

Xing, F., P. Guo and M.R. Lyu, 2005. A novel method

for early software quality prediction based on

support vector machine. Proceeding of 16th IEEE

International Symposium on Software Reliability

Engineering (ISSRE, 2005), pp: 10.

Zheng, J., 2010. Cost-sensitive boosting neural

networks for software defect prediction. Expert

Syst. Appl., 37(6): 4537-4543.

