
Research Journal of Applied Sciences, Engineering and Technology 11(3): 235-244, 2015

DOI: 10.19026/rjaset.11.1712

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: May 31, 2014 Accepted: August 19, 2014 Published: September 25, 2015

Corresponding Author: Waqar Mehmood, COMSATS Institute of Information Technology, Wah Campus, Quaid Avenue Wah

Cantt, Pakistan
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

235

Research Article
A Fine-granular Data Model for UML-compliant Models in a Model-based Software

Configuration Management Systems

Waqar Mehmood and Arshad Ali
COMSATS Institute of Information Technology, Wah Campus, Quaid Avenue Wah Cantt, Pakistan

Abstract: Software Configuration Management (SCM) aims to provide a controlling mechanism for software
artifacts created during the software development lifecycle. Traditional SCM systems are file-centric and
consider software systems as a set of text files. Today software development is model-centric. New challenges
such as model diff, merge and evolution control arise while using models as central artifact, traditional systems
are unable to resolve these challenges adequately. In its essence these challenges are mainly due to the
inappropriate representation of models at fine-granular level by traditional systems. In this study we
present a generic data model to represent model at fine-grain level. We use graph structures to represent
models at fine-granular level, which is an intermediate representation based on graph theory. By
transforming models into the graph structures we get several ad-vantages. Firstly, we avoid several problems
associated with textual representation of models. Secondly, we can handle different types of UML diagrams.
Thirdly, it can be used to develop a generic model-based SCM framework, which provides model configuration
management services for any UML model.

Keywords: Data model, file-based SCM system, fine-granular representation, model-based SCM system, model

transformation, versioning

INTRODUCTION

Developing large software systems involving more

than one persons essentially need the efficient
management of software artifacts created during
software development lifecycle. In the absence of
controlled management, the software products that
industry has turned out have typically been de-
livered much later than scheduled, cost more than
anticipated and have been poorly designed and
documented (Bersoff et al., 1978). Software
Configuration Management (SCM) aims to provide
a controlling mechanism to such problems. It deals
with controlling the evolution of software systems
during development and maintenance. This requires
many activities to perform, such as, construction and
creation of versions, identification of differences
between versions, conflict detection and merging
(Conradi and Westfechtel, 1998; Koegel et al., 2010;
Marcello et al., 2012; Xing, 2010). Traditional SCM
Systems, such as Subversion (Pilato, 2004) and CVS
(Cvs Project, 2012), are file-based, i.e., they consider
software sys- tem as a set of text files mainly in the
form of source code however, today software
development is model-centric. Model-Driven
Engineering (MDE) is a technique which aims to
reduce the complexity of software development by

assigning models a central role in the development
process. Traditional SCM systems work for the later
phases of software development, notably during
implementation where the main artifact is source
code in the form of text files. However, these systems
are not well suited for performing con-figuration
management tasks on models. Below we describe
several reasons why existing systems are not
adequate for performing SCM activities, such as,
Model Diff, Merge and Evolution Control activities.

Fundamentally, the main reason of the inadequacy
of existing systems is due to the fact that these
systems are file-based and consider software artifacts
as a set of text files having no relations (Ohst et al.,
2003; Ohst et al., 2004). In contrast, models are
graphs with nodes being complex entities and arcs
(relations) containing a large part of model
semantics. File-based SCM tools use textual or
structured data (such as XMI) to represent models at
fine-grained level. Representing models with textual
or structured files is an inadequate solution since it
requires operation on models at a low level of
abstraction. For instance, a class diagram might be
represented by a few lines of text in a file. The
order of these sections of text is irrelevant in a file
and the CASE tools can store the sections
representing classes or other diagram elements in

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

236

arbitrary order. Furthermore, the position where a
class symbol appears in the diagram is explicitly
stored in layout data. However, these textual
representation are sensitive to changes of the order
in which lines appear in a text file and they are also
sensitive to changes in the layout. To a large ex- tent,
the order of text lines and their layout is immaterial
for Diff and Merge operations on models. Therefore,
applying Diff and Merge operations at the level of
plain text will hardly produce meaningful results. Thus,
one of the main motivation of our work is to use a
suitable representation for models at fine-grained
level to perform Model Diff and Merge activities.
Another problem of this order and layout sensitivity is
that even small changes in the diagram can lead to
a complete reshuffling of the file contents resulting in
a large number of significant textual differences. It is
also possible that different file contents actually
represent the same diagram. Traditional SCM
systems are unable to handle this situation
adequately.

In its essence these challenges are mainly due to
the inappropriate representation of models at fine-
granular level. In this study we present a generic data
model, i.e., a Domain Specific Language (DSL) for
graph structures to represent UML models at fine-
grain level based on which one can avoid the
problems of model diff, merge and conflict detection
activities. Apart from other advantages, such as
avoiding the sensitivity problem of textual
representation of models, one important benefit of
graph structure DSL is that it is generic and can be
used to represent different types of UML models at
fine-grained level.

MATERIALS AND METHODS

We classify SCM systems into two main categories:

• File-based SCM Systems

• Model-based SCM Systems

File-based SCM systems: File-based SCM systems
are traditional text-based systems, which consider
software artifacts as a set of text files. These
systems, such as, Subversion and CVS, assume set
of files as implicit tree structure with nodes being
text files having no relations. They have been designed
to manage changes in textual artifacts, such as,
source code in a file system. Consequently, they
operate on the abstraction of file system and
represent change in a line- oriented way. The
underlying assumption they take in case of
modification of a document is that one or few
adjacent lines of the text are inserted, deleted or
modified.

Ohst et al. (2003) and Ohst et al. (2004) identify
several reasons under which these sys- tem failed to
work for document management in the early phases
of software development. For instance, in MDE

software documents are not only text files, but also
consist of diagrams such as, different types of UML
diagrams. These diagrams are often stored as XMI or
XML formats. For instance, a class diagram might be
represented by a few lines of text in the file. The
order of these sections of text is irrelevant in a file
and the CASE tools can store the sections
representing classes or other diagram elements in
arbitrary order. Furthermore, the position where a
class symbol appears in the diagram is explicitly
stored in layout data. However, these textual
representation are sensitive to changes of the order in
which lines appear in a text file and they are also
sensitive to changes in the layout. To a large extent,
the order of text lines and their layout is immaterial
for diff and merge operations on models.
Consequently, even small changes in the diagram can
lead to a complete reshuffling of the file contents
resulting in a large number of significant textual
differences. Its also possible that different file
contents actually represent the same diagram.
Therefore, applying diff and merge operations at the
level of plain text will hardly produce meaningful
results.

Furthermore in MDE, analysis, design,
implementation and testing are considered parallel
and coordinated activities. As a result, even simple
modifications can affect several files, or part of files,
belonging to different development phases.
Traditional file-based SCM systems are unable to
correctly represent such changes due to the fact that
they are not aware of the logical structure and
interlink dependencies between these documents.
Further-more, traditional SCM systems manage
changes on a line-oriented level. In contrast, many
software engineering artifacts are not managed on a
line- oriented level. For instance, adding an
association between two classes in a UML class
diagram is neither line-oriented nor can the change be
managed in a line-oriented way. A single structural
change in a diagram is usually managed as multiple
line changes by traditional SCM systems.

These dissimilarities clearly indicate that file-based
and model-based SCM cannot be handled in the same
way.

Model-based SCM systems: As discussed in previous
section traditional file-based SCM systems consider
software artifacts as a set of text files. However,
with the advent of MDE, models become first class
artifacts which evolve over the period of time due to
unavoidable changes. For instance, requirements
change when developers improve their understanding
of the application domain, design changes with the
identification of new technologies and design goals or
with the identification of new solution options,
similarly implementation changes for correctness and
enhancement purposes (Kogel, 2008). These changes
can affect every work product, from software design
to source code. Furthermore, models are no longer

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

237

Fig. 1: Software document representations

just for documentation, they are now considered as
the basis for generating executable software and many
other activities such as, versioning, testing, etc.
Therefore, a software configuration system for models
is crucial for an effective, collaborative software
development process, which considers models as
central artifacts and performs SCM activities on
models. In other words we need a paradigm shift
from traditional file-based SCM systems to model-
based SCM systems. Before we elaborate our
framework, first we define our proposed target DSL,
since we transform the instances of any source DSL
into graph structure for further processing like model
diff and merge.

LITERATURE REVIEW

In software development lifecycle two main types

of software documents are text files and graphical

models (Fig. 1). Text files may contain source code,

documentation etc, whereas graphical models are for

instance UML models. A model can be represented

in three different ways (Ohst et al., 2004):

• The graphical representation i.e., the diagram

itself

• The persistence representation e.g., XMI

• Intermediate representation e.g., syntax tree or

graph structure. The graphical representation is

the coarse-grained while the other two are fine-

grained representations. Normally a model can be

stored at fine-grained level by structure data like

XMI or XML (Girschick and Darmstadt, 2006;

Wang et al., 2003), but this kind of representation

is not well suited for model differentiation

purposes as pointed out in Ohst et al. (2003) and

Selonen and Kettunen (2007) and elaborated in

a b o v e section.

A data model defines the elements, attributes and

relationships between the elements at fine-grained

level (Fortsch and Westfechtel, 2007). The selection of

an appropriate data model has a strong impact on

the capabilities of the diff and merge tool. For

instance, a simple data model allows for simple and

efficient diff and merge algorithms. Different

approaches use different data models to perform diff

and merge activities. For example, in Alanen and

Porres (20 03) data model are based on MOF and

are thus applicable to MOF instances. Kelter et al.

(2005) and Xing and Zhenchang (2005) data models

are trees with typed elements, that can be decorated

with attributes. Ohst et al. (2003) and Ohst (2002) use

a fine-grained data model for UML class diagram

which resembles a syntax tree. All elements of a UML

diagram are modelled as separate objects, e.g., all

classes, all operations and all attributes.

MODEL-BASED SCM FRAMEWORK

As identified in above section existing file-based

SCM systems are not adequate for performing SCM

activities on models. Keeping the issues of file-based

SCM systems this paper proposes a generic model-

based SCM framework, which aims to overcome the

challenges faced by existing systems when dealing

with models as central artifact and is able to handle

MOF-Compliant DSLs.

A use case view of the approach is given

in Fig. 2. First a developer develops the source

models conforming to any MOF-compliant source

DSL. As a source DSL we are using UML (Object

Management Group, 2003). A source model

conforming to source DSL is transformed into target

model conforming to target DSL in model

transformation step. In the approach the source

DSL is not fixed while the target DSL is

fixed.

The source models will be transformed into

target models conforming to our proposed target DSL

by applying the concept of Model-to-Model

transformation (Czarnecki and Helsen, 2003). The

transformation from source to target models is based

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

238

Fig. 2: Configuration management-use case view

on the mappings defined by Configuration Manager

(CM) between the source and target DSLs. Further

details about model transformation will be given in

below section. After model transformation rest of

model-based configuration management activities

such as model diff, merge and evolution control will

be performed on the transformed models, however

these activities are not in the scope of this study.

Graph DSL: A DSL for graph structures: In our

approach, at a fine-grained level we represent

models in an intermediate representation, i.e., graph

structures. The meta model of the graph structure is

given in Fig. 3. It represents graph with typed

elements, that can be decorated with attributes. The

main concepts of the meta model are Node, Edge,

Link, Operation, Attribute, Parameter and Data

Type. Apart from other advantages, one important

benefit of this meta model is that it is generic and

can be used to represent different types of UML

and MOF-compliant DSL diagrams at fine-grained

level, since in essence most of the UML diagrams

except sequence diagram represent a graph (Ohst

et al., 2003). Below we give the description of these

concepts.

Node: A Node resembles an entity (e.g., a class in a

class diagram, or an activity in an Activity diagram)

of a model. Nodes are identified by an id and may

contain a number of attributes. A Node can be

connected with other Nodes by different form of

associations. In our graph structure the connection

between the Nodes are represented by VLinks and

Edges.

Attribute: An Attribute represents data which

represent features of node. They are identified by

name and have a data type.

Data type: A Data type model simple types such as

Int, String, Boolean etc. They are identified by name

and are most commonly used as attribute types.

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

239

Fig. 3: Abstract syntax of graph structure

Fig. 4: Model transformation hierarchy

Edge: An Edge models the type of association

between two nodes. Every edge has source and target

node. Different types of association between nodes

can be identified by Edge type of the edge,

which includes association, inheritance,

containment etc.

Operation: An Operation represent the operations

of a Node. An operation is identified by a name and a

list of zero or more typed parameters representing

the overall signature. Like all typed elements, an

operation specifies a type, which represents the

return type; it may be null to represent no return

type.

Parameter: A Parameter models an operation’s

input parameters. A parameter is identified by a

name and type of a value that may be passed as an

argument corresponding to that parameter.

VLink: Node can have links which express

unidirectional relationships between two Nodes.

Vlink are used to connect all the nodes in a linear

order. It is used as auxiliary element which do not

map to any element of the source model.

Model transformation in Graph DSL: We will

transform UML-compliant models into the instances

of above defined target DSL and perform the diff,

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

240

merge, evolution control activities on it. For

transformation we use the mappings at DSLs level,

i.e., between source DSL and target DSL.

The model transformation hierarchy is given in

Fig. 4. In the hierarchy at M3 level we have MOF

metametamodel, at M2 level we have MOF-

Fig. 5: Mappings between UML and GraphDSL

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

241

compliant source and target DSLs and the mappings
between them and at M1 level we have source models
and target models. At M1 level we also have the
transformation specifications to transform the source
models into target models.

Since we transform the instances of any source
metamodel into the instances of graph structure target
DSL for further processing like model diff and merge,
the configuration manager first performs mappings at
the DSL level. The mappings are done between the
elements of source and target DSL. Below we
describe the mappings between UML and
GraphDSL.

Mapping between UML and graph DSL: Figure 5 a
simplified view of UML metamodel supporting class
and activity diagram and their mappings with
GraphDSL element is given. Fol-lowing are the
mappings between source DSL, i.e., UML and target
DSL, i.e. Graph structure DSL.

Class-to-node mapping: In UML the classifier Class
defines a set of model entities. The corresponding
concept in Graph Structure DSL is defined by Node.
Therefore, we map Class onto Node.

Activity-to-node mapping: Similar to the classifier

Class, classifier. Activity also define a set of model

entities. The corresponding concept in Graph

Structure DSL is defined by Node. Since Activity is a

super type of classes Initial Node, Fork Node, Merge

Node, Join Node, Decision Node, Call-Behaviour

Action, Activity Final Node and Central Buffer

Node therefore, we map all the subtypes of Activity

onto Node.

Operation-to-operation mapping: Operations

belonging to Class are defined in the UML as

Operation. The corresponding concept in Graph-

Structure DSL is defined by Operation belonging

to Node. Therefore, we map Operation onto

Operation.

Attribute-to-attribute mapping: Attributes

belonging to Class are defined in the UML as

Attribute. The corresponding concept in Graph-

Structure DSL is defined by Attribute. Therefore,

we map Attribute onto Attribute.

Parameter-to-Parameter Mapping: Parameters are

defined in the UML as Parameter. The corresponding

concept in Graph Structure DSL is defined by

Parameter. Therefore, we map Parameter onto

Parameter.

Data type-to-data type mapping: Data types are

defined in the UML as Data Type. The corresponding

concept in Graph Structure DSL is defined by Data

Table 1: Mapping between UML and GraphDSL

UML GraphStructure

Class Node
InitialNode Node
ForkNode Node
MergeNode Node
JoinNode Node
DecisionNode Node
CallBehaviorAction Node
ActivityFinalNode Node
CentralBufferNode Node
Reference Edge
ControlFlow Edge
ObjectFlow Edge
Attribute Attribute
Operation Operation
Parameter Parameter

Type. Therefore, we map Data Type onto Data
Type.

Association-to-edge mapping: A relationship between
two entities is described by Association in UML. The
corresponding concept in Graph- Structure DSL is
defined by Edge. Therefore, we map Association onto
Edge. The type of Association corresponds to the type
of Edge, i.e., Ed-geType (Table 1).

RESULTS AND DISCUSSION

As part of the work, we did a prototype

implementations for model trans-formation
component. The implementation is done using the
open source (EMF, 2012) framework using Java as a
source language.

Figure 6 and 7 shows the reference architecture
of our frame-work. The Model Editor will be used by
the software developer for develop-ing source
models. The software developer is free in the choice
of selecting a model editor provided that the model
editor has the functionality of seri- alizing models in
XMI representation. For instance, MagicDraw and
EMF Editor both provide this facility to store and
retrieve models in XMI. EMF uses XMI for default
serialization, whereas MagicDraw extends its
support of MDA tools by adding capability to export
of MagicDraw UML model to EMF based on UML 2
XMI. The Model Loader component loads the
models in EMF for further processing.

Figure 7 shows the architecture of model
transformation module. It consists of Model Loader
and Model Transformer component. It uses Model
Loader component for taking the XMI input of the
models. After loading the model the Model
Transformer component is used to transform the
model into graph structure. The Model Transformer
component traverse the model elements.

The Model Transformation component loads
the inputs model conforming to source DSL and
transform it into graph structures conforming to
target DSL according to the MDA model
transformation hierarchy. The Model Transformation
component also takes DSL mappings as input.

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

242

Fig. 6: Model editor architecture

Fig. 7: Transformation architecture

The output of the Model Transformer are graph
structures of models.

Algorithm 1 shows the pseudo code for
transforming DSL models into Graph DSL models
based on the mappings for the given DSL. The trans-
formation algorithm works as follows. In order to
transform DSL models first models will be loaded
from memory then model’s root element will be
accessed. The root element is a container for all the
elements of the models. Afterwards the root element
will be traversed for its contents, i.e., traverse root.
eContents (line 1-31). Then for all the elements in
node mappings the traversed element is checked for
node mapping if the element is mapped to node then
first it will be typecast to appropriate type (line 2–
4), for instance, if the element is E-Class then first
typecast the element into E-Class. Then a new Node
will be created in the target Graph DSL model by
calling the method create new Node() given in
algorithm 2 (line 5). Afterwards the element will be
traversed for its contents, i.e., eM.e Contents (line
6- 28). Then for all elements in the attribute
mappings the traversed element will be checked for
attribute mapping if the traversed element is mapped

to At-tribute then first typecast the element into
eA of appropriate type (line 7-13), for instance, if
the element is of type EAttribute then first typecast
the element into EAttribute. Then set new Node
attribute as eA.name and its type as eA.type. Then
for all elements in the edge mappings the traversed
element will be checked for edge mapping if the
traversed element is mapped to Edge then first
typecast the element into eR of appropriate type
(line 14-20). Then set new Node edge as eR.name
and its type as eR.type. Then for all elements in the
operation mappings the traversed element will be
checked for operation mapping if the traversed
element is mapped to Operation then first typecast
the element into eOp of appropriate type (line 21-
27), for instance, if the element is of type EOperation
then first typecast the element into EOperation.
Then set new Node operation as eOp.name and its
type as eOp. type. The whole process will be
repeated until all the elements of root.eContents are
traversed.

Algorithm 2 shows the pseudo code for creating
nodes in Graph DSL. First a new Node of type
Node will be initialized (line 1). The id and type of

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

243

new Node will be id and type of the element which
will be represented by the new Node (line 2-3).
Initially header Node and last Node are set to null.
Upon creation of first new Node the header Node and
last Node will point to new Node (line 4-8). Upon
creation of second new Node the header Node will
point to the first new Node and last Node will point
the second new Node and so on. Finally, the created
new Node will be returned to the calling procedure
(line 9).

CONCLUSION

In this study we presented a generic data model

for UML-based models in model-based SCM systems.

The main contribution of this paper is defining an

adequate representation for UML models to be

presented at fine-grained level. This is what called by

Frtsch and Westfechtel (1998) as determination of

document model. The document or data model

defines the elements, relationships and attributes to

be considered and has a strong impact on the

capabilities of the diff and merge tool. Traditional

SCM systems uses simple file-based data model to

represent software artifacts, i.e., as a set of text files

having no relations and some metadata information

about the files. Due to this file-based data

modeltraditional SCM tools uses textual or

structured data to represent models at fine-grained

level, which causes many problems in performing

SCM activities on models. For instance, textual

representation are sensitive to both changes in the

order of text and changes in the layout. To a large

extent, the order of text lines and their layout is

immaterial for diff operation of models. Therefore,

applying diff operation at the level of plain text will

hardly produces meaningful results. We presented a

generic graph structure representation for models

based on which we developed model transformations

algorithm. By our generic graph structure

representation we are able to represent any UML-

based models. Thus our approach is not limited to

any specific model. Furthermore, we are able to

avoid the problems of textual representation of

models, such as, lay- out change, reshuffling issue,

etc. Finally, our approach is tool-independent. Our

approach allows the developers to be flexible in

selecting model editor tool for developing models.

As a future direction we will work on the rest of the

component of our model-based software configuration

management framework. First the core activity of

model-based SCM, i.e., model diff, will be performed.

Model diff deals with comparing two versions in

order to detect differences and matches between them.

Afterward the model merge which deals with

merging two or more models will be performed

(Algorithm 1 and 2):

Algorithm 1: Transform DSL

Require: Graphstructure gs and EObject root

1: for all element eM in model’s root.eContents do
2: for all NodeMappings do

3: if eM mapsTo Node then

4: typecast an element eN to type eM
5: newNode = createNode(eN.id,eN.type)

6: for all element e in eM.eContents do

7: for all AttributeMappings do
8: if e mapsTo Attribute then

9: typecast an element eA to type e

10: set newNode.attribute←eA.name
11: set newNode.attributetype←eA.type

12: end if

13: end for
14: for all EdgeMappings do

15: if e mapsTo Edge then

16: typecast an element eR to type e
17: set newNode.edge←eR.name

18: set newNode.edge←eR.type

19: end if
20: end for

21: for all OperatopmMappings do

22: if e mapsTo Operation then
23: typecast an element eOp to type e

24: set newNode.operation←eOp.name

25: set newNode.operationtype←eOp.type
26: end if

27: end for

28: end for
29: end if

30: end for

31: end for

Algorithm 2 creatNode

Require: entityId and entity Typ

1: instantiate new Node of type Node
2: set newNode.id←entity Id;

3: set new Node. type←entity Type;

4: if header Node ≡ null then
5: header Node←new Node;

6: else if last Node = null then

7 lastNode.v node←newNode;
8: end if

9: return new Node

REFERENCES

Alanen, M. and I. Porres, 2003. Difference and union

of models. Proceeding of the UML Conference.

Springer-Verlag, LNCS 2863, San Francisco,

California, pp: 2-17.

Bersoff, E., V.D. Henderson and S.G. Siegel, 1978.

Software configuration management. Proceeding

of the Software Quality Assurance Workshop on

Functional and Performance Issues, pp: 9-17.

Conradi, R. and B. Westfechtel, 1998. Version models

for software configuration management. ACM

Comput. Surv., 30(2).

Cvs Project, 2012. Retrieved form: URL

http://www.nongnu.org/cvs.

Czarnecki, K. and S. Helsen, 2003. Classification of

model transformation approaches. Proceeding of

2nd OOPSLA03 Workshop on Generative

Techniques in the Context of Model-Driven

Architecture, 2003.

Res. J. Appl. Sci. Eng. Technol., 11(3): 235-244, 2015

244

EMF (Eclipse Modeling Framework), 2012. Retrieved

form: URL

http://www.eclipse.org/modeling/emf/.

Fortsch, S. and B. Westfechtel, 2007. Differencing and

merging of software diagrams-state of the art and

challenges. Proceeding of International

Conference on Software and Data Technologies.

Barcelona, pp: 90-99.

Girschick, M. and T. Darmstadt, 2006. Difference

detection and visualization in UML class

diagrams. Technical Report TUD-CS-2006-5,

2006.

Kelter, U., J. Wehren and J. Niere, 2005. A generic

difference algorithm for UML models. In:

Liggesmeyer, P., K. Pohl and M. Goedicke (Eds.),

Software Engineering. Lecture Notes of

Informatics, Gesellschaft für Informatik, Essen,

Germany, P-64: 105-116.

Koegel, M., M. Herrmannsdoerfer, Y. Li, J. Helming

and J. David, 2010. Comparing state- and

operation-based change tracking on models.

Proceeding of the 14th IEEE International

Enterprise Distributed Object Computing

Conference (EDOC ’10), pp: 163-172.

Kogel, M., 2008. Time-tracking intra- and inter-model

evolution. Proceeding of Software Engineering

Conference-Workshop, 2008.

Marcello, L.R., D. Marlon, U. Reina and M.D. Remco,

2012. Business process model merging: An

approach to business process consolidation.

ACM T. Softw. Eng. Meth., 22(2).

Object Management Group (OMG), 2003. Unified

modeling language 2.0 infrastructure

specification. September 2003.

Ohst, D., 2002. A fine-grained version and

configuration model in analysis and design.

Proceeding of the International Conference on

Software Maintenance (ICSM’02), pp: 521.

Ohst, D., M. Welle and U. Kelter, 2003. Differences

between versions of UML diagrams. Proceeding of

the 9th European Software Engineering

Conference Held Jointly with 11th ACM

SIGSOFT International Symposium on

Foundations of Software Engineering

(ESEC/FSE-11), pp: 227-236.

Ohst, D., M. Welle and U. Kelter, 2004. Merging

UML documents. Internal Report, University of

Siegen.

Pilato, M., 2004. Version Control with Subversion.

O’Reilly and Associates, Inc., Sebastopol, CA,

USA, 2004, ISBN: 0596004486.

Selonen, P. and M. Kettunen, 2007. Met model-

based inference of inter-model correspondence.

Proceeding of 11th European Conference on

Software Maintenance and Reengineering

(CSMR, 2007), pp: 71-80.

Wang, Y., D.J. DeWitt and J.Y. Cai, 2003. X-diff: An

effective change detection algorithm for XML

documents. Proceeding 19th International

Conference on Data Engineering, 54: 519-530.

Xing, E. and S. Zhenchang, 2005. Umldiff: An

algorithm for object-oriented design differencing.

Proceeding of the 20th IEEE/ACM International

Conference on Automated Software Engineering,

pp: 54-65.

Xing, Z., 2010. Model comparison with genericdiff.

Proceeding of the IEEE/ACM International

Conference on Automated Software Engineering

(ASE’10), pp: 135-138.

