
Research Journal of Applied Sciences, Engineering and Technology 11(3): 267-273, 2015
DOI: 10.19026/rjaset.11.1716
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2015 Maxwell Scientific Publication Corp.

Submitted: December 10, 2014 Accepted: February 5, 2015 Published: September 25, 2015

Corresponding Author: D. Veni, Anna University, Coimbatore, Tamilnadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

267

Research Article
Analysis of Data Mining Dataset Using Fuzzy Based Unnested Select SQL Queries

1
D. Veni and

2
K.R. Chandran

1
Anna University,

2
Information Technology Department, PSG College of Technology, Coimbatore, Tamilnadu, India

Abstract: The aim of this study is to improve the existing traditional databases. Some new techniques have been
involved to handle the imprecise or uncertain information from the dataset. Dataset is prepared and used to analyze
the data mining project which consume more time and need many complex queries. Nested query is predominant
method to handle complex queries. Execution of a nested query may cause the heavy performance penalty. The main
objective of this study is to reduce the heavy performance penalty of nested queries by using the unnested queries.
The unnested queries produce the equivalent output as nested queries with minimum penalty and execution time.
Success of unnested queries are examined using join algorithms. It is more efficient than the nested-loop algorithms
which are used to evaluate the nested queries. In this study, unnested queries are used to analysis the data-mining
project in dataset, we get the result from combining fuzzy set theory. In experimental results, we have shown that
the performance of evaluating the unnesting techniques with extended merge-join and horizontal aggregations
techniques CASE, SPJ and PIVOT in dataset. Thus, unnested queries improve the performance of execution and
linear scalability.

Keywords: Fuzzy queries, nested queries, PIVOT, set exclusive operator

INTRODUCTION

In data mining, especially in a relational database

there is a need of significant effort to prepare a
summary data set. Many techniques take data set as
input in a horizontal layout, with several records and
one variable or dimension per column. That is the case
with models like clustering, classification, regression
and PCA; consult (Ordonez, 2010). These techniques
are usually used to describe the data set.

Data aggregation is a process in which information
is collected and expressed in a summary form and
which is used for purposes such as statistical analysis.
The Structured Query Language (SQL) queries are
more flexible and easier to process relational database
for data aggregation. There are numerous functions and
operators for aggregation using SQL. Generally,
aggregation is the summation of columns and return the
average, maximum, minimum or row count over groups
of rows. This process limits to build large data sets for
data mining purposes.

The concept of fuzzy set theory with database
technology is an effective technique (Baldwin, 1983)
where the database system uses fuzzy based SQL query
language that is used here in SQL language. In this, the
queries contain fuzzy relation where each tuple satisfies
the query condition to extend its membership degree.
The query optimization is done by decomposing a
complex query into nested query. In standard SQL, the
nested queries suffer from heavy performance penalty

when they contain complex queries. A common
technique to evaluate a nested standard SQL query is to
transform the query into an equivalent flat query and
then to evaluate the flat query (Qi et al., 2001). This
type of query is called unnesting technique, which is
used by many researchers in relational database systems
(Kim, 1982; Lohman et al., 1984). This unnested query
is processed by different join algorithm and more
successful than nested-loop algorithms. Nested query is
predominant method to handle complex queries.
Execution of a nested query may cause the heavy
performance penalty.

The main objective of this study is to reduce the

heavy performance penalty of nested queries by using

the unnested queries. The unnested queries produce the

equivalent output as nested queries with minimum

penalty and execution time. This study is focused to

examine unnested queries using join algorithms for

dataset which is more efficient than the nested-loop

algorithms to evaluate the nested queries. These

unnested queries are used with fuzzy to analyze the data

mining project in dataset and the results are obtained by

combining fuzzy set theory. The nested and equivalent

unnested queries are explained in detail.

LITERATURE REVIEW

Gray et al. (1996) proposed a relational

aggregation based operation that generalizing Group-

Res. J. App. Sci. Eng. Technol., 11(3): 267-273, 2015

268

By, Cross-Tab and Sub-Totals. The cube operator

generalizes the cross tab, drill-down, histogram, roll-up

and sub-total constructs. These operators are used in

more complex non-procedural data analysis programs

and data mining. It treats each of the N aggregation

attributes of N-space dimension. The aggregate of a

particular set of attribute value is a point in this space

and the set of points form an N- dimensional cube. By

aggregating the N-cube to lower dimensional spaces

super-aggregates are computed. Creating a data cube

requires generating the power set of the aggregation

columns.
Ordonez (2004) proposed two SQL aggregate

functions to compute percentages that addressing many
limitations. The first function returns one row for each
percentage in vertical form and the second function
returns each set of percentages adding 100% on the
same row in horizontal form. These aggregate functions
are used to introduce the concept of percentage queries
and to generate efficient SQL code in data mining.
Queries using percentage aggregations are called
percentage queries. When computing vertical
percentage queries two practical issues were identified.
First is missing rows and second issue is division by
zero.

Wang et al. (2003) proposed a Complete SQL

Extension for data Mining and Data Streams. This

technique is a powerful database language and system

that enables users to develop complete data-intensive

applications in SQL, by writing new aggregates and

table functions in SQL, rather than in procedural

languages as in current Object-Relational systems. The

“ATLaS” system consists of applications which consist

of various data mining. A function is coded in

“ATLaS” SQL and execute with a modest performance

overhead with respect to the same applications written

in C/C++. Using the schema and queries in Query

Repository this system handles continuous queries.

Ordonez and Chen (2012) introduced a new class

of aggregate functions for a horizontal layout that build

data sets using automating SQL query writing and

extending SQL capabilities. Horizontal aggregations are

evaluated by three fundamental methods namely CASE;

SPJ and PIVOT. These three methods produce the same

result and performance is analyze by time complexity

and I/O cost.

PROPOSED METHODOLOGY

Fuzzy set: An element a Є X is defined in a fuzzy set F
if and only if µ.�(a)>0 and to be a full member if and
only if µ.� (a) = 1 where A is defined by a membership
function µ.� () which is given to every element a Є X, a
membership degree (a) Є [0, 1].

Relational database: In this study, we used following
notations in Table 1.

Each attribute has set of data values as its domain
where each data values u is associated with a possibility

Table 1: Notation

Notation Description

W, X, Y and Z Relations with upper case letters
w, x, y and z Tuples with lowercase letters
X.A The attribute A of the relation X

distribution. It has a membership function denoted by
 µ.� and over domain of attribute. Its possibility
distribution of crisp data values is defined by:

�.���� =
 1 � � = �
0 ��ℎ������

� (1)

Let P (A) is set of all possibility distributions that

may be defined over the domain of an attribute A of
relation R with a schema A1,…., An, where Ai is an
attribute, is defined as:

X = P (A1) x P (A2) x ……..x P(An) x D

where, D is a system-supplied attribute for membership
degree with a domain [0, 1] and x denotes the cross
product:

Fuzzy SQL of the statement is specified in
SELECT Attributes
FROM Relations
WHERE condition

The following query is about pairs of male X and

female Y persons who have the same age and M has a
more than “high” income:

Query 1
SELECT X.No, Y.No
FROM X, Y
WHERE Y.AGE = M.AGE AND
X.INCOME> “high”

Hence, AGE and INCOME may have fuzzy values,

comparisons made are fuzzy.

Nested fuzzy queries: The nested Fuzzy SQL query is

used to express a complex query. The below example is

about the nested Fuzzy SQL query find the number of

old female persons who have middle age male person's

income:

Query 2

SELECT Y.No

FROM Y

WHERE Y.AGE = ª old° AND

Y.INCOME IN

(SELECT X.INCOME

FROM X

WHERE X.AGE = ªmiddle age°)

This nested query uses nested loop where the outer

block contains relation Y and the inner block contains
relation X. Execution of this nested query of the inner

Res. J. App. Sci. Eng. Technol., 11(3): 267-273, 2015

269

relation X is scanned once for every tuple in outer
relation Y. Hence it takes more processing cost, I/O
cost when the number of tuples in X is very large. In
order to avoid the scanning process of every tuple in
intermediate relation and speed up the process, use
unnesting Query 2 in the conventional databases by
obtain the following Query 2':

Query 2'
SELECT Y.NO
FROM Y, X
WHERE Y.AGE = “old” AND
X.AGE = “middle age” AND
Y.INCOME = X.INCOME

Basic nested queries: Two basic nested queries are
used, type A and type B. The distinguish between two
types is type A query, inner block contains join
predicate referencing the outer relation and type B
query does not. k1 indicates the conjunction of
predicates involving the outer relation where k2
contains only the inner relation.
The following type B of Query B is below:

Query B
SELECT X.A
FROM X
WHERE k1 AND X.B is in
(SELECT Y.C
FROM Y
WHERE k2)

The following unnested Query B' is identical for
Query B:

Query B'
SELECT X.A
FROM X, Y
WHERE k1 AND X.B = Y.CAND k2
Query A
SELECT X.A
FROM X
WHERE k1 AND X.B is in
(SELECTY.C
FROM Y
WHERE k2AND Y.V = X.U)

The following unnested Query A' is
identical for Query A:

Query A'
SELECT X.A
FROM X,Y
WHERE k1 AND k2AND X.B = Y.C
AND Y.V = X.U

Set exclusion operator: The set inclusion operator “is
in” is replaced by the “is not in” in Kim (1982). This
Antijoin predicate is used to unnesta type B or type A
query and left out predicates p1 and p2 in type B or

type A query. Query J is of type A with the set
exclusion operator.

Query J

SELECT X.A

FROM X

WHERE X.B is not in

(SELECT Y.C

FROM Y

WHERE Y.V = X.U)

The following query 3 is example of type J and

finds the number of employees in Sales department who

don’t have an income of any employee in Research

department with his/her age X and Y.

Query 3

SELECT X.NO

FROM ESALES X

WHERE X.INCOME is not in

(SELECT Y.INCOME

FROM ERESEARCH Y

WHERE X.AGE = Y.AGE)

To unnest Query J, temporary relation uses both

the WITH and the GROUPBY clauses and explicitly

refers to the membership degrees of X, Y and the

answer relations. X. K be a key of X.

Query J can be unnested to the following Query JX':

JT(K, M) = (SELECT X.K, R.E, MIN(D)

FROM X, Y

WHERE X.D AND ¬(Y.D AND

X.B =Y.C AND X.U = Y.V)

WITH D ≥0

GROUPBY X.K)

Query JX'

SELECT M

FROM JT

The query JT is identical and Query J' dispose of

attribute K. The impossible directly use of membership

degree attributes X.D and Y.D because each predicate

is evaluated to a satisfaction degree and the

membership degree can also be a satisfaction degree

where a membership degree of attribute can used itself

as a predicate.

Nested queries with aggregate: The unnesting of a

type AA query (Kim, 1982) in which the inner block of

query has a join predicate which refer the outer relation

and SELECT clause has aggregate function which

generate a non-empty values from a nonempty set of

values.SQL has aggregate functions such as COUNT,

AVG, SUM, MIN and MAX. COUNT returns the

number of values in set.

Res. J. App. Sci. Eng. Technol., 11(3): 267-273, 2015

270

This function can be applied in nested and the

unnested queries to the same set of values. The

following Query AA is a type AA nested query:

Query AA

SELECT X.A

FROM X

WHERE k1 AND X.Boperator1

(SELECTAGG (Y.C)

FROM Y

WHERE k2 AND

Y.V operator2 X.U)

Operator1 and operator2 in predicate are

comparison operator among {=, ≤, ≥, <,>} and AGG is

one of the aggregate functions {MAX, MIN, AVG,

SUM and COUNT}. If there is no joinpredicate in the

inner block, then the inner block gives the same single

value for every tuple in X. Hence, no unnesting is

needed.

The following example for type AA query finds the

names of cities in region A, each of cities which has an

average home-income higher than the maximum

average home-income of cities in region B with same

population:

Query 4

SELECT X.NAME

FROM REGIONA X

WHERE X. A_H_INCOME>

(SELECT MAX (Y.A_H_INCOME)

FROM REGIONB Y

WHERE Y.POPULATION

= X.POPULATION)

To unnest Query AA is defined as follows:

R1(U) = (SELECT X.U

FROM X

WHERE k1)

R2(U,A). = (SELECT T1.U, AGG(Y:C)

FROM T1, Y

WHERE k2

Y.V operator2 R1.U

GROUPBY R1.U)

R1 and R2 are temporary relation where R1 is the

set of all values in X.U that is employed to evaluate the

inner block and R2 is the set of all aggregated values

that is acquired in the inner block of Query AA. Each

value is taken from the relevant value of X.U which

produces it. R1 is acquired from the X-tuples that desire

of k1 by projecting on X.U with duplicates removed

and all membership degrees set to 1. R2 has got by

joining R1 with Y-tuples that satisfy k2 on the join

condition Y.V operator2 R1.U, grouping the result

based on R1.U and use AGG to each of it.

Query AA can be used to unnested by make use of

one of following two queries.

Query AA' is used when AGG is not CNT and

Query CNT' is used, if otherwise.

Query AA'

SELECT X.A

FROM X, R2

WHERE k1 AND X.U≡ R2.U

AND X.B operator1 R2.A

Query CNT'

SELECT X.A

FROM X, R2

WHERE k1 AND X.U.+≡R2.U

[X.B operator1R2.A: X.B operator1 0]

The WHERE clause is a combination of the

predicate k1 and a left outer join predicate which is

followed by an IF-THEN-ELSE enclosed in a []. The

left outer join operator (Lacroix and Pirotte, 1976;

Codd, 1979; Rosenthal and Reiner, 1984) is to preserve

the tuples of the relation X because only X.A is

projected.

EXPERIMENTAL RESULT

This unnested, nested fuzzy and horizontal

aggregation queries are evaluated using java and SQL

server as database. The dataset used in this study is

employee dataset. This dataset contains employee

salary, male, female employee and city details. In this

section, we analyzed the data mining project by

unnested queries. For this purpose, various unnested

and nested queries are used to evaluate and analyze the

dataset. The experiment conducted on Intel duo core as

processor which has 8 GB hard disk, 4 GB ram and

2.40 GHz processor speed. The nested fuzzy and

unnested query produces the same result. But nested

fuzzy queries take more execution time and memory

utilization than conventional unnested queries. The

performance of these nested, unnested fuzzy queries

and horizontal aggregation queries (CASE, SPJ and

PIVOT queries) are analyzed by execution time,

memory usage and cost of execution of queries.

Nested fuzzy queries, CASE, SPJ and PIVOT

queries: In this section, execution time, memory usage,

cost of nested fuzzy queries CASE, SPJ and PIVOT

queries are discussed. Table 2 shows that the nested

fuzzy queries, CASE, SPJ and PIVOT queries

consumes high execution time, memory usage and cost.

From Table 1, we clearly understand that each queries

of nested fuzzy takes execution time in the range of 9.7

Res. J. App. Sci. Eng. Technol., 11(3): 267-273, 2015

271

Table 2: Execution time, memory usage and cost of nested fuzzy queries CASE, SPJ and PIVOT queries

Query name Execution time Memory Cost

Basic: type N 11.131862 61.6171875 61.0
Basic: type J 11.624662000000001 61.4033203125 61.0
Pivot query 11.545881 57.0947265625 57.0
Nested query with aggregate 9.7624139999999997 59.6884765625 59.0
Nested query set operator 11.180471000000001 60.955078125 60.0
CASE Query 11.489729000000001 60.2041015625 60.0
SPJ Query project join 10.226998 62.2275390625 62.0
SPJ Outer project join 10.64856 62.3798828125 62.0
Nested fuzzy query 17.779354999999999 61.2060546875 61.0

Fig. 1: Execution time of nested fuzzy queries, CASE, SPJ and

PIVOT queries

Fig. 2: Memory utilization of nested fuzzy queries, CASE, SPJ

and PIVOT queries

Fig. 3: Cost of execution of nested fuzzy queries, CASE, SPJ and PIVOT queries unnested queries

18

17

16

15

14

13

12

11

10

9
8

7

6

5
4

3
2

1

0

B
as

ic
: t

y.
..

B
as

ic
: t

y.
..

P
IV

O
T

 q
ue

ry

N
es

t.
..

N
es

t.
..

C
as

e
qu

er
y

S
P
J

q
ue

ry

S
P
J

q
ue

ry

N
es

te
d

fu
z.

..

Algorithm name

E
x

e
cu

ti
o
n

 t
im

e
(m

s)

B
as

ic
: t

y.
..

B
as

ic
: t

y.
..

P
IV

O
T

 q
ue

ry

N
es

t..
.

N
es

t..
.

C
as

e
qu

er
y

S
P
J

qu
er

y
S
P
J

qu
er

y
N

es
te

d
fu

z.
..

Algorithm name

65.0
62.5
60.0
57.5
55.0
52.5
50.0
47.5
45.0
42.5
40.0
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5
0.0

M
e
m

o
ry

 (
K

B
)

Memory, nested
query set

(operator) = 60.955

B
as

ic
: t

y.
..

B
as

ic
: t

y.
..

P
IV

O
T

 q
ue

ry

N
es

t..
.

N
es

t.
..

C
as

e
qu

er
y

S
P
J

qu
er

y
S
P

J
qu

er
y

N
es

te
d

fu
z.

..

Algorithm name

65.0
62.5
60.0
57.5
55.0
52.5
50.0
47.5
45.0
42.5
40.0
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5
0.0

C
o

st
 (

rs
)

(Cost, PIVOT
query) = 57

Res. J. App. Sci. Eng. Technol., 11(3): 267-273, 2015

272

Table 3: Execution time, memory usage and cost of unnested fuzzy queries

Query name Execution time Memory Cost

Unnested query 2.0407621250000001 53.897663247501349 53

Unnested query JA 7.8977913749999997 53.617389810001349 52
Unnested query count 9.1876202500000002 54.660358560001349 53

Unnested query Jx 1.3994446250000001 55.226764810001349 54

Fig. 4: Execution time of execution of nested fuzzy queries

Fig. 5: Memory utilization of unnested fuzzy queries

to 17.7 ms, respectively memory utilization in the range

of 57.09 to 62.37 kb, respectively and cost for

execution of queries take 57 Rs to 62 Rs. Hence, the

nested fuzzy queries take more time. The Pivot

produces linear scalability than CASE and SPJ method

(Ordonez and Chen, 2012).

Figure 1 to 3 shows Execution time, memory usage

and cost of nested fuzzy queries, CASE, SPJ and

PIVOT Queries. This execution time, memory

utilization and cost are measured by milliseconds,

Fig. 6: Cost of execution of unnested fuzzy queries

kilobytes and amount. This figure is generated

using bar chart in java.

Understand that each queries of unnested fuzzy

take execution time in the range of 1.4 to 9.1 ms,

memory utilization in the range of 53.6 to 55.2 kb,

respectively and cost for execution of queries take 52

Rs to 64 Rs. Hence, the nested fuzzy queries take more

time. Figure 4 to 6 shows execution time, memory

usage and cost of unnested fuzzy queries. This

execution time, memory utilization and cost are

measured by milliseconds, kilobytes and amount. This

figure is generated using bar chart in java.
This section discuss about execution time, memory

usage and cost of unnested fuzzy queries. Table 3
shows that unnested fuzzy takes less execution time,
memory usage and cost than nested queries. In Table 3,
we proved that each unnested queries takes execution
time in the range of 1.4 to 9.1 ms, respectively memory
utilization in the range of 53.6 to 55.2 kb, respectively
and cost for execution of queries take 52 Rs to 64 Rs.
Hence, the unnested fuzzy queries take less execution
time than nested queries because it uses join algorithm.

CONCLUSION

This study discussed about efficient processing of

evaluation of Unnested and Nested Fuzzy SQL Queries
for analyzing the data mining project. Performance of
an extended merge-join with the unnested queries is
compared with nested loop method in which the nested
queries must be evaluated. In experimental results, we

9.5

E
x
e
cu

ti
o

n
 t

im
e
 (

m
s)

9.0

8.5

8.0

7.5
7.0

6.5
6.0

5.5
5.0

4.5

3.0

2.5
2.0

1.5
1.0

0.0
0.5

4.0

3.5

Unnested
query

Unnested
query JA

Unnested
query count

Unnested
query JX

Algorithm name

(Execution time, unnested
 query JA) = 7.898

Algorithm name

57.5
55.0
52.5
50.0
47.5
45.0
42.5
40.0
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5
0.0

M
em

o
ry

 (
K

B
)

(Memory, unnested
query) = 53.888

Unnested
 query

Unnested
 query JA

Unnested
 query count

Unnested
 query JX

Algorithm name

55.0
52.5
50.0
47.5
45.0
42.5
40.0
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5
0.0

C
o

st
 (

rs
)

(cost, unnested
query JA) = 52

Unnested
 query

Unnested
 query JA

Unnested
 query count

Unnested
 query JX

Res. J. App. Sci. Eng. Technol., 11(3): 267-273, 2015

273

have shown that the performance of evaluating the
unnesting techniques with extended merge-join and
horizontal aggregations techniques CASE, SPJ and
PIVOT (Ordonez and Chen, 2012) in dataset. These
techniques are applied to analyze the data mining in
dataset.

REFERENCES

Baldwin, J.F., 1983. A fuzzy relational inference

language for expert systems. Proceeding of the
13th IEEE International Symposium Multiple-
valued Logic, pp: 416-423.

Codd, E.F., 1979. Extending the database relational
model to capture more meaning. ACM T. Database
Syst., 4(4): 397-434.

Gray, J., A. Bosworth, A. Layman and H. Pirahesh,

1996. Data cube: A relational aggregation operator

generalizing group-by, cross-tab and subtotals.

Proceeding of the 12th International Conference on

Data Engineering (ICDE, 1996), pp: 152-159.

Kim, W., 1982. On optimizing an SQL-like nested

query. ACM T. Database Syst., 7(3): 443-469.

Lacroix, M. and A. Pirotte, 1976. Generalized joins.

SIGMOD Rec., 8(3).

Lohman, G.M., D. Daniels, L.M. Haas, R. Kistler and

P.G. Selinger, 1984. Optimization of nested queries

in a distributed relational database. Proceedings of

the 10th International Conference on Very Large

Data Bases (VLDB'84), pp: 403-415.

Ordonez, C., 2004. Vertical and horizontal percentage

aggregations. Proceeding of the ACM SIGMOD

International Conference on Management of Data

(SIGMOD'04), pp: 866-871.

Ordonez, C., 2010. Statistical model computation with

UDFs. IEEE T. Knowl. Data En., 22(12):

1752-1765.

Ordonez, C. and Z. Chen, 2012. Horizontal

aggregations in SQL to prepare data sets for data

mining analysis. IEEE T. Knowl. Data En.,

24(4):678-691.

Qi, Y., Z. Weining, L. Chengwen, W. Jing, C. Yu et al.,

2001. Efficient processing of nested fuzzy SQL

queries in a fuzzy database. IEEE T. Knowl. Data

En., 13(6).

Rosenthal, A. and D.S. Reiner, 1984. Extending the

algebraic framework of query processing to handle

outerjoins. Proceeding of the 10th International

Conference on Very Large Data Bases (VLDB'84),

pp: 334-343.

Wang, H., C. Zaniolo and C.R. Luo, 2003. ATLaS: A

small but complete SQL extension for data mining

and data streams. Proceeding of the 29th

International Conference on Very Large Data

Bases (VLDB'03), 29: 1113-1116.

