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Research Article 
Study of the Natural Convection of a Newtonian Fluid in a Porous Medium Confined in 

Portions of Cylinders 
 

Mamadou Tine, Samba Dia, Omar Ngor Thiam and Joseph Sarr 
Laboratoire de Mécanique des Fluides et Applications, Département de Physique, Faculté des Sciences et 

Techniques, Université Cheikh Anta, DIOP, Dakr-Fann, Sénégal 
 

Abstract: By using a bicylindric coordinates and vorticity-stream function formalism, the authors study the natural 
convection in a porous medium in an enclosure delimited by portions the cylindrical enclosure. After having a 
dimensionnalise our equations, the space discretization is performed using a finite difference method while a purely 
implicit schema is adopted for the time discretization. The algebraic systems of equations of the discretization are 
solved by a Successive under Relaxation method (SUR). The results obtained show the dependence of the heat 
transfers in various porous median (several of the Darcy number). 
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INTRODUCTION 
 

The study of natural convection in porous 
mediuminan enclosure delimited by portions of 
cylinders makes possible tobetter understandthe heat 
transfers in various industrial applications such as 
proceeds of drying, ingeophysical flow, in the storage 
of radioactive waste, in crystal growth, etc. 

The majority of experimental, analytical and 
numerical work which treats of heat and mass transfer 
in porous medium were summarized in the study of 
Nield and Bejan (1992). By using the Darcy-
Boussinesq model, Mota et al. (2000) studied the 
natural convection in an eccentric elliptic porous ring. 
The results presented provide an alternative approach 
for optimize the rate of thermal transfer by a suitable 
choice of the annular form. 

Bennacer et al. (2002) presented a numerical study 
of the thermosolutal natural convection in an 
anisotropic porous rectangular v cavity with the Darcy-
Brinkman formulation. They decoupled in this study the 
effects of the thermal and hydraulic anisotropy in order 
to be able to analyze more precisely the influence of 
each anisotropy. A study of quality of the heat 
insulation with a porous layer has been done by Saada 
et al. (2007), the non Darcian model is considered to 
describe the flow in the porous medium. Bousri and 
Bouhadef (2007) brought a contribution to the research 
of heat and mass transfers in the flows of certain fluids 
in reactive mediums. They quantified the various mass 
and heat transfers and they established the variation of 
concentration and temperature in the reactive porous 
medium, according to a certain number of parameters 

such as the Darcy number, the Reynolds number and 
the modified. Frank-Kamenetskii number. 

Sankar et al. (2011) studied the natural convection 
in a vertical ring filled with a saturated porous material. 
They analyzed the effects of Rayleigh and Darcy 
number with various lengths of the heat source. 
 
Mathematical approach: The aim of this study is to 
study natural convection in a porous medium containe 
delimited  by  portions  of  nonconcentric  cylinders 
(Fig. 1). The cylindrical wall θ1 is maintained at a 
temperature T1 while the external cylinder θ2 

is 
maintained at a temperature below T2. The two other 
cylinders (η1 and η2) walls located on either sides ofthe 
symmetry axisare thermally insulated. 
To formulate and solve this problem it is assumed that: 
 
• The transfers are two-dimensional and laminar 
• All the phenomena are symmetrical  
• All fluid properties are taken to be constant, with 

the exception of the density in the momentum 
equation. In this equation variations of density 
obey to the Boussinesq linear law 

• In the heat equation the viscous dissipation 
functions as well as the compression effects are 
neglected 

• The porous medium is considered homogeneous, 
isotropic and does not undergo space variation of 
porosity in the enclosure 

 
Taking into account the geometry of our enclosure, 

we employ abicylindrical system of coordinates (η, θ) 
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Fig. 1: Geometry of the problem 
 
(Moon and Spencer, 1971) in which the boundaries of 
our cavity are given by constant coordinates lines. The 
passage of Cartesian coordinates to the bicylindrical 
coordinates is carried out using the following relations: 
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= = =
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where b is the parameter of torus pole.  

By introducing the stream function and the 
vorticity, transfers equations and the boundary 
conditions associated are written in the following 
dimensionless forms: 
Stream function equation: 
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Heat equation: 
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in which the boundaries of 
our cavity are given by constant coordinates lines. The 
passage of Cartesian coordinates to the bicylindrical 
coordinates is carried out using the following relations:  

sinh sin
, ,

cosh cos cosh cos
x y z z

η θ η θ
= = =

       
(1) 

 
function and the 

vorticity, transfers equations and the boundary 
conditions associated are written in the following 
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The length, velocity, steam function, vorticity and 
time scale are respectively defined by:
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The associated initial and boundary conditions of 
the problem considered are: 
 

At 0t =  
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At t>0 the boundary conditions are the following ones:
• On the inner cylinder ( )1θ θ= :
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The length, velocity, steam function, vorticity and 
time scale are respectively defined by: 

The associated initial and boundary conditions of 

( , ) ( , ) ( , ) ( , ) ( , ) 0U V Tη θ η θ ψ η θ η θ η θ= = = Ω = =     (5) 

the boundary conditions are the following ones:

 : 
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Fig. 2: Variation of the Nusselt number and the minimal of the stream function against
 

 
Fig. 3: Isotherms observed by Sarr (left) at 

by us (right) at Ra = 107  
 

• On the outer cylinder ( )2θ θ= : 
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• On the walls 1η  

and 2η : 
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The local and the average Nusselt number and 

friction coefficient relative to the lower cylindrical are 
defined by: 
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of the Nusselt number and the minimal of the stream function against 

 

Isotherms observed by Sarr (left) at Gr = 0.1.107 and 
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local and the average Nusselt number and 
friction coefficient relative to the lower cylindrical are 
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Tp = The average temperature inside the enclosure.
 
Numerical formulation: Equations are integrated 
numerically using a finite difference method. The 
spatial discretization is made by a finite difference 
method. A fully implicit procedure is retaining for 
treating the temporary derivatives. The resulting 
algebraic equations were solved by successive under 
relaxation method (SUR) (Patankar, 1980). The 
iterative process is repeats until the criterion of 
convergence below is satisfied:  
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where k is the incrementing index of the iterative 
process and

rε his precision. 

The grid size selected is equal to
uniform grid spacing in both directions, Fig.
the influence of the grid system according to the 

instantaneous average Nusselt number
cylinder (θ = θ1) and the minimum value of the stream
function ψmin, the Rayleigh number is fixed at
5.106. All the results are obtained with
time step ∆t = 10-3 is retained to carry out all numerical 
tests. Refining this time step results in minor 
the transient patterns. 

In order to validate our results, we compare them 
with those of Sarr et al. (2001). In Fig. 3 we can see on 
the right our isotherms obtained for 

 

      .
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Nu Nu Nu ds
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                          (15) 

average temperature inside the enclosure.

 Equations are integrated 
using a finite difference method. The 

spatial discretization is made by a finite difference 
A fully implicit procedure is retaining for 

treating the temporary derivatives. The resulting 
algebraic equations were solved by successive under 

n method (SUR) (Patankar, 1980). The 
iterative process is repeats until the criterion of 

                                        (16) 

is the incrementing index of the iterative 

grid size selected is equal to (71*71), with 
uniform grid spacing in both directions, Fig. 2 shows 
the influence of the grid system according to the 

instantaneous average Nusselt number Nu  on the inner 
and the minimum value of the stream-

, the Rayleigh number is fixed at Ra = 
. All the results are obtained with Pr = 0.7 and a 

is retained to carry out all numerical 
tests. Refining this time step results in minor changes of 

In order to validate our results, we compare them 
. (2001). In Fig. 3 we can see on 

 Ra = 107
 and on the 
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left those observed by experimentally by Sarr 
(2001) for a Grashof number Gr = 0.1.10

Although the geometries and the boundary 
conditions are not rigorously identical, the topology of 
the isotherms is quite similar. 
 

RESULTS AND DISCUSSION

 

The numerical results presented correspond to a 
Darcy number (Da) varying from 0.1 to
(Ra) and the Prandtl (Pr) are respectively equal to 
and 0.7. 

On Fig. 4 we can see the evolution in time of the 
thermal field (left) and the stream function (right) for 
various Da. The porous layer constitutes 
dynamic resistance to the flow due to the Darcian 
effects which attenuate the thermal effects.
 

Fig. 4: Evolution of isotherms and streamlines 
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left those observed by experimentally by Sarr et al. 
= 0.1.107. 

Although the geometries and the boundary 
conditions are not rigorously identical, the topology of 

RESULTS AND DISCUSSION 

The numerical results presented correspond to a 
to 1, the Rayleigh 

(Ra) and the Prandtl (Pr) are respectively equal to 107
 

4 we can see the evolution in time of the 
thermal field (left) and the stream function (right) for 
various Da. The porous layer constitutes a strong 
dynamic resistance to the flow due to the Darcian 
effects which attenuate the thermal effects. 

In the first instance, theis otherms areal most 
parallel curves and fit the profile of the hot wall (
wall). The temperature distribution is 
from the hot wall to the cold wall. But as we progress in 
time the isotherms become more and more close to the 
wall of coordinate θ = θ1, we assist to the formation of a 
boundary layer. The same phenomenon has been 
observed by Thiam et al. (2014) in the sa
no porous medium. The flow fieldis organized in two 
symmetrical cell srotatingin opposite directions

For the Darcy number Da>0.5
viscous forces will be dominant and thus the flow rate 
becomes significant. By consequent, the streamlines 
present a strong flow pattern with the swirl principal 
moves towards the cold wall. I can note that the 
intensity of convective flow becomes stronger than the 
value of the Darcy number is increasing.

 
4: Evolution of isotherms and streamlines for the different Darcy numbers at Ra = 107  

theis otherms areal most 
parallel curves and fit the profile of the hot wall (lower 

The temperature distribution is simply decreasing 
. But as we progress in 

time the isotherms become more and more close to the 
, we assist to the formation of a 

boundary layer. The same phenomenon has been 
. (2014) in the same cavity with 

The flow fieldis organized in two 
symmetrical cell srotatingin opposite directions. 

>0.5, the effects of the 
viscous forces will be dominant and thus the flow rate 

t. By consequent, the streamlines 
present a strong flow pattern with the swirl principal 
moves towards the cold wall. I can note that the 

becomes stronger than the 
of the Darcy number is increasing. 
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Fig. 5: Variation of the average Nusselt number against dimensionless time for various values of
 

Fig. 6: Variation of the average friction coefficient aga

When Da = 1, the penetration of the flow is almost 
total. The flow in the porous layer and the fluid merges. 
I tend towards the case of a flow in an entirely fluid 
cavity. With the values pupils of the permeability, i can 
expect that the porous medium does not have an 
influence and that i have a behavior of fluid medium 
some is the depth of the porous medium.

The intensity of the flow increases with the Darcy 
number and this growth is all the more high since the 
Rayleigh number is high. For the values of the Darcy 
number of the lowest, the porous medium behaves like 
an impermeable wall. 

Figure 5 shows us the variation of the average 

Nusselt number Nu  of the active wall according to time 
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5: Variation of the average Nusselt number against dimensionless time for various values of Da 

 
 

6: Variation of the average friction coefficient against dimensionless time for various values of Da 
 

, the penetration of the flow is almost 
total. The flow in the porous layer and the fluid merges. 
I tend towards the case of a flow in an entirely fluid 

pupils of the permeability, i can 
expect that the porous medium does not have an 
influence and that i have a behavior of fluid medium 
some is the depth of the porous medium. 

The intensity of the flow increases with the Darcy 
he more high since the 

Rayleigh number is high. For the values of the Darcy 
number of the lowest, the porous medium behaves like 

5 shows us the variation of the average 

of the active wall according to time 

for different Darcy numbers. We can note that when we 

increase the Darcy number, Nu

explained by the fact that the resistance of the flow 
becomes less and less significant when we increase the 
Darcy number. That’s why the frictions too on the w
of coordinate θ = θ1 are more important when 
increase (Fig. 6). 
 

CONCLUSION

 

The objective of this study is to numerically study 
the dynamic and thermal phenomena in an enclosure 
delimited by portions of cylinders filled with a porous 
medium. 

ifferent Darcy numbers. We can note that when we 

Nu  decrease. This is 
explained by the fact that the resistance of the flow 
becomes less and less significant when we increase the 
Darcy number. That’s why the frictions too on the wall 

are more important when Da 

CONCLUSION 

The objective of this study is to numerically study 
the dynamic and thermal phenomena in an enclosure 
delimited by portions of cylinders filled with a porous 
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The behavior of the isotherms and the streamlines 
shows us that the Darcy number doesn’t change 
significantly the flow pattern. 

For the values of the Darcy number of the lowest, 
the porous medium behaves like an impermeable wall 
and a Darcy number more raises that it has a behavior 
of the fluid medium.  

The increase in the Darcy number favors the flow 
in the porous environment. This medium supports the 
increase in the effect of the thermal forces and 
consequently the phenomenon becomes again pseudo 
convective and results in an increase in the Nusselt 
number and the decreasing one of the friction 
coefficient. 
 

NOMENCLATURE 

 

Latin letter: 
 
b  : Parameter of torus pole 
C  : Coefficient de Forchheimer 
Cf  : Friction coefficient  

Cf  : Average friction coefficient  

Da  : Darcy number 
F  : Symbolic function representing the 

vorticity or the temperature 

1G  and 2G  : Coefficients 
1 1

1 cos cosh
( , )

cosh cos
G G

θ η
η θ

η θ
−

= =
−  

and 
2 2

sin sinh
( , )

cosh cos
G G

θ η
η θ

η θ
= =

−
 

H  : Metric coefficient 1

cosh cos
H

η θ
=

−
 

N u  :  Nusselt number  

Nu  :  Average Nusselt number 
Pr  : Prandtl number Pr ν α=  

q  : Heat flux density 

Ra  : Rayleigh number 
4g b q

Ra
β
ναλ

=  

S  : Surface area of the enclosure 

t  : Dimensionless time [ ]S  

T  : Dimensionless temperature [ ]K  

,U V  : Dimensionless velocity components in 
the transformed plane  

 
Greek symbols: 
 
α  : Thermal diffusivity 2 1m s− 

 
 

β
 

: Thermal expansion coefficient 1K −  
 

, , zη θ
 
: Bicylindrical coordinates 

T∆  : Difference of temperature of the two cylinders  

t∆  : Time step [ ]s  

λ  : Thermal conductivity 1 1Wm K− − 
 

 

ν  : Kinematical viscosity 2 1
m s

− 
 

 

 

Centre: 

 
Ψ  : Dimensionless stream function  
Ω  : Dimensionless vorticity 
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