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Abstract: In this study, linear and dynamic analysis of 2-D structures using a new strain based quadrilateral finite 
element is addressed. The developed element has the three Degrees of Freedom (DOF) at each of the four corner 
nodes (two general external degrees of freedom and the in-plane rotation). The displacement functions of the 
developed element satisfy the exact representation of the rigid body modes. Both linear and dynamic analyses are 
considered. For the dynamic analysis lumped mass and explicit time integration are employed. For the purposes of 
validation some selected numerical examples are solved using this developed element and the obtained results show 
its good performance. 
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INTRODUCTION 

 
For many years researchers have investigated strain 

based finite element approach for structural analysis 
(Ashwell and Sabir, 1972). The most important tasks in 
this research are the development of reliable elements 
and the improvement of the accuracy and 
computational efficiency of these elements. Compared 
to the displacement based method which has been 
recognized that for some type of problems provides 
poor results, the strain based method has become 
among the most widely used for the analysis of solid 
and structures. Since the appearance of this approach, 
many researchers have tried to develop finite elements 
that are accurate and robust. The first developed 
elements were only concerned with curved ones 
(Ashwell et al., 1971). This approach was later 
extended to plane elasticity elements (Sabir, 1985b; 
Sabir and Salhi, 1986; Belarbi and Maalam, 2005), for 
three-dimensional elasticity (Belarbi and Charif, 1999), 
for cylindrical shells (Sabir and Lock, 1972) and for 
plate bending (Belounar and Guenfoud, 2005). 
Compared with displacement-based method, the 
advantages of the strain based approach have been 
illustrated on several elements (Sabir and Charchafchi, 
1982; Rebiai and Belounar, 2014, 2013).  

The ability to solve linear, dynamic and dynamic 
elastoplastic problems is more important in many 
aspects of finite element work. In fact, exact solutions 
for these problems exist only for a few simple cases, so 
the use of the finite element method is required. 
However the use of the classical displacement-based 
elements becomes increasingly inefficient and leads to 

a considerable gain on computing times for this type of 
analysis.  

In this study, the strain based approach which was 
recently extended to the material nonlinear analysis of 
2-D structures (Rebiai and Belounar, 2014, 2013) is 
used to examine linear and dynamic behavior (free and 
forced vibration analyses) of membrane structures 
through a new strain based element with drilling 
rotation named “SBE” Strain Based Element. A number 
of benchmarks with classical conditions and load 
conditions are considered which were already used in 
the validation of new finite elements. 
 

METHODOLOGY 
 
Formulation of the developed element: The element 
SBE with three degrees of freedom (Ui, Vi and in plane 
rotation θi) at each of the four corner nodes is shown in 
Fig. 1.  

In a 2-D analysis the relationship between strains 
and displacements are given by: 
 

 
 

Fig. 1: SBE finite element 
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The strains given by Eq. (1) must satisfy the 

compatibility Eq. (2) which can be formed by the 
eliminating U, V from Eq. (1), hence: 
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We first integrate Eq. (1) with all three strains 

equal to zero to obtain: 
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Equation (3) gives the three components of rigid 
body displacements. We use three independent 
constants (a1, a2, a3) for the representation of the rigid 
body components, it remains nine constants (a4, a5, ….., 
a12) for expressing the displacement due to straining of 
the element. These are given as: 
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The strains given by Eq. (4) satisfy the 
compatibility equation. Equations (4) are equated to the 
equations in terms of U, V from Eq. (1) and the 
resulting equations are integrated, to give: 
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The final displacement functions are obtained by 
adding Eq. (3) and (5) to obtain the following: 
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The present element SBE has the four corner nodes 

and 12 degrees of freedom and since the matrix [C] of 

the developed element is not singular, its inverse exists 

and the stiffness matrix [K
e
] for the present element is 

given by: 
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where, [Q], [J] and [D] are the strain, the Jacobean and 

the elasticity matrices respectively and [C] is the matrix 

which relates the 12 nodal displacements to the 12 

constants a1 to a12. These are given respectively in 

appendix. 

 

DYNAMIC NUMERICAL VALIDATION 

 

A computer program is prepared for studying the 

behavior of the developed element. Three example 

problems are presented to demonstrate the robustness 

and accuracy of this element in dynamic analysis. The 

elements used in comparison are listed in the appendix. 

 

Eigenvalues of a rectangular solid with lumped 

mass: Nominally this test as shown in Fig. 2 treated in 

Smith and Griffith (2004, 1988) representing an elastic 

solid cantilever beam with flexural rigidity of 1/12 and 

Poisson’s ratio set to 0.3. 

The results of the eigenvalues are shown in Table 1 

for plane strain conditions. The fundamental frequency 

ω1 and the axial frequency ω2 are calculated with 

different elements (Q4, Q8 and SBE). The results 

obtained by the element SBE are in good agreement 

with those obtained by the Q8 element and with those 

of the analytical solution. The fundamental frequency 

obtained by the Q4 element is considerably greater than 

that of the analytical solution which shows that the Q4 

is a poor representation of the solid (beam), at least in 

the bending modes. 

 
Forced vibration of rectangular solid in plane strain 
conditions: In this example Fig. 3 the forced vibration 
analysis uses the complex response method described in 

reference (Smith and Griffith, 1988). The cantilever 
beam is subjected to a harmonic vertical force (cos ωt) 
at the end of the beam. The damping ratio γ is 0.005 or 
5% applied to all modes of the system, the Young's 
modulus is E = 1 kN/m

2
, Poisson's ratio v = 0.3, the 

forcing frequency ω = 0.3, the time step is DT = 1/20 of 
forcing period (2 π/ω) and the mass density per unit 
volume is ρ = 1 t/m

3
. The problem is in plane strain 

conditions. 
The results presented in Fig. 4 show the 

displacements at the end of the beam versus time-step, 

the two elements Q8 and SBE are used in this analysis. 

We can see clearly that the behavior of the SBE is 

strictly similar to the Q8 element in forced vibration 

analysis but this later uses more degrees of freedom. 
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Table 1: Eigenvalues of the cantilever beam 

Frequencies  Q4 Q8 SBE 

Mesh 3×1 ω1 0.080 0.064 0.064

 ω2 0.353 0.413 0.410

Mesh 5×1 ω1 0.068 0.060 0.062

 ω2 0.391 0.391 0.393

Exact solution ω1 1.8754×EI/ρAL4  0.063

 ω2 π/2L�E/ρ  0.393

 

Table 2: Forced vibration of a rectangular elasto-plastic solid 

(displacement versus time) 

Displacements 

------------------------------------------------------------------------------------ 

Time Q8  SBE 

0 0 0 

0.5000.10-4 -0.2995.10-3 -0.3090.10-3 

0.1000.10-3 -0.1214.10-2 -0.1223.10-2 

0.1500.10-3 -0.2684.10-2 -0.2581.10-2 

0.2000.10-3 -0.4867.10-2 -0.3974.10-2 

0.2500.10-3 -0.8084.10-2 -0.8098.10-2 

0.3000.10-3 -0.1231.10-1 -0.1239.10-1 

 

 
 

Fig. 2: Geometry of cantilever beam 

 

 
 

Fig. 3: Geometry and mesh of the cantilever beam subjected 

to forced vibration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Forced vibration of a rectangular solid ‘displacements 

versus time-step’ 

 

Forced vibration of a rectangular elasto-plastic solid 

with lumped mass: In this example Fig. 5 explicit 

integration method is used in this analysis. The 

maximum stress VonMises is σmax = 50.000 kN/m
2
, the 

Young’s  modulus  E  =  3.10
7  

kN/m
2
,  Poisson's  ratio  

v = 0.3, load multiplier PL = 180, the number  of  step  

is   700   and   the   mass   density   per   unit   volume   

ρ
 
= 0.7333.10

-3 
t/m

3
. 

The results presented in Table 2 show the 

displacements at the end of the beam. These results 

show clearly that the behavior of the new element is 

similar to the Q8 but the SBE is more economic. 

 

LINEAR NUMERICAL VALIDATION 
 

Linear MacNeal beam: Three types of examples for 

plane elasticity problems are presented to validate the 

present element. We consider a slender beam of 

MacNeal and Harder (1985). The geometrical and 

materials characteristics of the structure are shown in 

Fig. 6. The deflection results are listed in Table 3. From 

the linear deflection results we can see that the SBE is 

insensitive to mesh distortion. For the regular

 

 
 

Fig. 5: Geometry and mesh of the elastoplastic cantilever beam 
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Fig. 6: MacNeal and harder patch tests: geometry, mesh and boundary conditions 

 

 
 

Fig. 7: Geometry and mesh of a simple beam 

 
Table 3: MacNeal-harder cantilever beam: numerical results of deflection for different load cases and mesh geometry 

Element 

Shear P = 1 

----------------------------------------------------------------------------- 

Bending M = 10 

------------------------------------------------------------------- 

Regular Parallel Trapezoidal Regular Parallel Trapezoidal 

P5Sβ  0.1081 0.07848 0.004970 0.26800 0.17000 0.01404 

SBTIEIR  0.0050 0.00390 0.000054 0.03186 0.02727 0.00108 

SBT2V  0.1020 0.09440 0.090000 0.25500 0.25400 0.25700 

HQ4-9β  0.1072 0.10570 0.105800 0.26900 0.26600 0.26600 

SBE 0.1081 0.10550 0.105700 0.27000 0.26700 0.26700 

Analytical  0.10810  0.27000   

 

Table 4: Vertical displacement and rotation at the point B of the simple beam 

Load case Mesh 

ITW  

------------------------------------------ 

Pimp  

--------------------------------------------   

SBE 

----------------------------------- 

Vert. dis. End rot. Vert. dis. End rot. Vert. dis. End rot. 

Forces Reg. 1.50 0.60 1.50 0.60 1.50 0.59 

Forces Dist. 1.14 0.57 1.39 0.54 1.49 0.59 

Couple Reg. 1.50 0.62   1.51 1.44 1.50 0.60 

Couple Dist. 1.39 0.49 1.39 1.28 1.50 0.60 

Analytical      1.50  0.60    

 

Table 5: Vertical displacement at point A 

Mesh 

Normalized displacement at point A 

-------------------------------------------------------------------------------------------------------------------------------------- 

Q4 SBRIE ALLMAN SBRIEIR SBE 

4×1 0.2412 0.3293 0.3027 0.3300 0.3347 

Ref (timoshenko)  1,000 (0.3553)     

 

mesh all the results are in good agreement with the 

exact solution. Compared with the Strain Based 

Elements (SBTIEIR, SBT2V) we can see that the 

developed element is more accurate in both cases of 

loads. 

A simple beam:  

The higher-order patch test: This problem is treated 

by Ibrahimobigovic et al. (1990) and it is relative to a 

beam fixed by a minimum number of constraints. The 

beam is subjected to a pure bending  state  as  shown  in 
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Fig. 8: Cantilever beam under a tip load 

 

Fig. 7. The first load condition is constituted by a unit 

couple of forces applied at the free end of the beam 

whereas the second load case is still a moment but it is 

applied as a concentrated couple at the end. The 

geometrical and mechanical characteristics are as 

follow: 

 

E = 100, v = 0 P = 1, M = 0.5, L = 10, H = 1, t = 1 

 

Both regular and distorted meshes are considered 

in this example. The vertical displacement and the 

rotation at the point B are computed. 

The good behavior of developed element relatively 

to the insensitivity to distortion is shown in Table 4. 

The results in terms of the drilling rotations show a 

significant improvement with those of Ibrahimobigovic 

et al. (1990) and Pimpinelli (2004). 

 

Short cantilever beam of Allman: A short cantilever 

beam is subjected to uniform vertical load as shown in 

Fig. 8. It is modeled by 4 elements. The results of the 

displacement presented in Table 5 for the SBE show the 

good agreement with those of the exact solutions given 

by Timoshenko and Goodier (1951). 

 

CONCLUSION 
 

Here the finite element named SBE for linear and 

dynamic analysis of 2-D structures is a relatively 

straightforward one with 12 degrees of freedom. Using 

this element the numerical obtained results agree 

reasonably well with all those from others research and 

from the exact solutions. This element is simple and 

contains higher order of polynomial terms. The 

convergence rate is shown to be quite rapid and usually 

a coarse mesh will give satisfactory results. This 

element can be conveniently applied to the solution of 

elastic and dynamic engineering problems. 

 
APPENDIX 

 
Components of the matrix [C] of the dimension (12×12) for the 

SBE are: 
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where xi and yi are the coordinates of node i (i = 1, 4), the matrix [C] 
is given by: 
 

[C] = [[C1][C2][C3][C4]]
T 

 
For the case of plane stress problems the elasticity matrix [D] is: 
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For the case of plane strain problems the elasticity matrix [D] is: 
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The strain matrix is given by: 
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A brief notes on the elements to be compared are given:  
 

• Q8: The eight nodes quadrilateral element with sixteen Degrees 
of Freedom (DOFs) 

• SBRIEIR and SBTIEIR: The four and three node strain based 
rectangular and triangular in-plane elements with in-plane 
rotation with twelve DOFs (Sabir, 1985a) 

• SBT2V: The Improved three node strain based triangular in-
plane element with drilling rotation with nine DOFs (Belarbi and 
Bourezane, 2005) 

• HQ4-9β: Isostatic quadrilateral membrane finite element with 
drilling rotation ( Madeo et al., 2012)  

• P5Sβ: Pian’s hybrid element with four node (Pian and Sumihara, 
1984) 

• Quadrilateral element with drilling ITW DOFS (Ibrahimobigivic 
et al., 1990) 

• Quadrilateral element with drilling rotation Pimp (Pimpinelli, 
2004) 

• Q4: Quadrilateral element with four node 

• SBRIE: Strain based rectangular inplane element (Sabir and 
Sfendji, 1995) 

• Allman: (Allman, 1988) 
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