
Research Journal of Applied Sciences, Engineering and Technology 11(7): 740-745, 2015 

DOI: 10.19026/rjaset.11.2033 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2015 Maxwell Scientific Publication Corp. 

Submitted: April  10,  2015                         Accepted: April  22,  2015 Published: November 05, 2015 

 

Corresponding Author: Syed A. Abu-Bakar, Department of Electronics and Computer Engineering, Universiti Teknologi 

Malaysia, Johor, Malaysia 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

740 

 

Research Article 
Sub-difference Image of Curvelet Transform for Crowd Estimation: A Case Study at the 

Holy Haram in Madinah 
 

1, 2
Adel A. Hafeez Allah, 

1
Syed A. Abu-Bakar and 

2
Wasim A. Orfali 

1
Department of Electronics and Computer Engineering, Universiti Teknologi Malaysia, Johor, Malaysia 

2
Department of Electrical Engineering, Taibah University, Madinah, Saudi Arabia 

 

Abstract: Counting people and estimating their densities over a certain area is a fundamental task for many artificial 
intelligence systems. In this study, sub-difference images of curvelet transform are postulated as an efficient source 
for effective crowd estimation features. The new algorithm is described in detail in the form of a case study 
conducted at the Holy Haram in Madinah. The application of the difference images extracted by curvelet transform 
is thus proven to be efficient and useful for further studies. In addition, the proposed method is independent of any 
background modeling or background subtraction techniques. The method can also handle crowds of different sizes 
and strong perspective distortion conditions. The estimation procedure is performed using two versions of difference 
images generated by forward and customized inverse curvelet transforms. The proposed algorithm is then compared 
with normal difference image utilization. 
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INTRODUCTION 

 
Crowd estimation is a crucial and challenging task 

in many computer vision applications. The accurate 
count or estimation of the density of people over a 
certain area is a key indicator of operational and 
security management. In crowd management and 
control, normal operating conditions must be 
maintained. Overcrowding may be an indicator of 
congestion, delay, or other security abnormalities and 
rioting; by contrast, low crowds indicate complications 
or other discomfort zones. People from all over the 
world visit Holy Harams for the purpose of worship. 
Thus, ensuring people’s comfort during their prayers is 
a major management objective. The Holy Haram in 
Madinah has over 3 million visitors a year. It measures 
over 98,000 m

2 
and has more than 42 multi-door 

entrances. Therefore, ensuring smooth flow at all zones 
and entrances is a challenging task. To facilitate the 
distribution of up to 167,000 worshippers throughout 
the Holy Haram at a time, an intelligent application 
must be developed to help provide the required level of 
safety and comfort. Closed-Circuit Television Systems 
(CCTV) have a basic setup that captures crowd images 
and transmit them to monitors. These images are 
assessed by an observer. However, such a routine is 
tedious. The attention of observers is likely to wander 
over time and final judgments are usually subjective. 
Therefore, automated surveillance and reporting is 
highly beneficial to crowd monitoring.  

Image processing techniques for crowd counting 
may be grouped into three main categories, namely, 
detection, movement clustering-based and mapping-
based methods (Hashemzadeh et al., 2013; Ali et al., 
2013). The first two approaches detect humans or the 
independent motions of humans over time and either 
count or relate these data to the final results. By 
contrast, the third approach counts the number of 
people without segmenting the foreground or applying 
any human detection technique. Thus, this method is 
feasible for crowd estimation (Loy et al., 2013). The 
third type of approach estimates the number of people 
in a scene based on features extracted from the 
foreground. Background subtraction or background 
modeling is the main component of most mapping-
based approaches.  

The establishment of estimation using the 
mapping-based methods was first proposed by Davies 
et al. (1995). In this mapping method, two features 
were considered in counting, namely, the number of 
pixels of a foreground area and the total number of 
perimeter edges. A linear relationship was constructed 
to estimate the number of people in scenes. Since then, 
many studies have extracted and evaluated new 
features, including holistic and local ones. Features 
with holistic textures generated based on statistics are 
reported in Rahmalan et al. (2006) and Chan et al. 
(2008). These features include Gray-Level Co-
Occurrence  Matrix  (GLCM)-based features (Marana 
et al.,   1998)   and   wavelet   transform-based  features 
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Fig. 1: Significant perspective distortion in the images of the 

dataset of the Bab Assalam gate at the Holy Haram in 
Madinah. An object that is close to the camera 
occupies more pixels (large bounding box) and 
contains more detail than a distant object (smaller 
bounding box) 

 

 
 
Fig. 2: Calculation of a density map. AB and CD correspond 

to parallel lines on the ground plane. D is the width of 
the row and H is the vertical distance from the 
vanishing point 

 
(Xiaohua et al., 2006). Local features include 
foreground blob size (Kong et al., 2006), the 
histograms of edge orientations (Chan et al., 2008), 
local binary patterns (LBPs) (Ma et al., 2008) and 
feature points such as corners (Albiol et al., 2009). 

The majority of available map-based techniques 
requires a reference image to read a scene (Chen, 
2013). This requirement is a major drawback of these 
approaches. An effective model and algorithm must be 
established to facilitate background and shadow 
removal, as well as to achieve precise binarization. This 
binarization need to overcomes the issues of occlusion 
and of broken blobs, which complicate background 
subtraction (Zhu et al., 2014). A previous study (Chen, 
2013) considers frame differences for spatial-temporal 
features. The method was background-independent, but 
the resultant difference image is uninformative. Thus, 
weak features are generated. Another work 
(Narasimhan et al., 2012) utilized a special difference 
image. However, this image was specific to the study 
and could not be extended. Other studies attempted to 
extract a foreground mask to dominate the feature 
points that relate to the foreground alone (Zhu et al., 
2014). The work in Hafeez Allah et al. (2014) was able  

 
 
Fig. 3: Normalized density map for the Region of Interest 

(ROI) in the Holy Haram dataset 

 
to produce an enhanced version of the difference image 
but did not face the problem of high crowd in high 
perspective distortion situation. Moreover, there was no 
illumination problem in the dataset and thus, not to deal 
with intensity problem.  
 
Perspective correction: As shown in Fig. 1, 
perspective distortion is a natural phenomenon in which 
distant objects in an image frame appear smaller than 
objects that are close to the camera. This distortion was 
not  considered  in various  previous  works   (Davies  
et al., 1995; Marana et al., 1998; Rahmalan et al., 2006) 
because it is unnoticed, given that the images were 
taken using high-angle cameras. In cases of severe 
distortions, however, dependence on any pixel-based 
feature that relies on the number of foreground pixels or 
on their intensities will be limited as remote objects 
occupy fewer pixels than those that are closer to the 
camera. 

Perspective distortion was studied in Ma et al. 
(2004) by computing a density map based on a 
vanishing point concept. The camera is assumed to be 
horizontally oriented so that the same weight is 
assigned to all pixels in the same row of the image 
matrix, as shown in Fig. 2. A reference row with a unity 
density is selected in the image; all other rows are 
scaled with respect to this row. A similar methodology 
is employed in Chan et al. (2008), but object sizes 
(height multiplied by width) are assigned on the basis 
of their location in the image. These objects are 
interpolated over the rest of the image. The resultant 
matrix represents the weight distortion caused by the 
perspective problem. A normalization matrix produces 
the correction density map shown in Fig. 3. 
 
Curvelet transform: Independence from background 
modeling is one of the aims of the proposed approach 
on the basis of the assumption that within a short time 
period, changes to the background are minimal and can 
be considered unchanged. Hence, the proposed 
algorithm is influenced by a difference image derived 
from two sequential frames. However, subtracting two 
sequential frames removes the background and is 
unlikely to produce a simplified version of the 
foreground image. 
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Fig. 4: Curvelet tiling with five scales.  The  shaded  wedge denotes the frequency response of a curvelet at orientation 4 and 

scale 4 

 

 
 
Fig. 5: Representation of edges with many wavelets (left) and 

few curvelet coefficients (right)  

 

Thus, a transformation process that may preserve more 

information in the difference image must be developed. 

Candes et al. (2006) present a new multi-scale 

transform called curvelet transform. This method is 

designed to represent curved edges more efficiently 

than other transforms can, such as wavelet transform. 

Curvelet transform may decompose an image � of 

size � × � for up to ����	�
 − 3 scales (levels). These 

scales contain a different number of orientations. The 

curvelet frequency tiling with five scales are shown in 

Fig. 4. 

The discrete curvelet transform 
�representation 

of an image �of size � × � is defined as follows, 

where � ∈ ��	��
 (Nayak et al., 2012): 

 


�	�, �, ��, ��
 = � ���, ����,�, !, "

� ��, ��#$ % &'
#$(&) 

     (1) 

 

where, 

 �  = The angle 

�  = The direction 

�� and �� = The spatial locations of the output 

Multi-resolution analysis is a basic feature of both 

wavelet and curvelet transforms. Unlike the wavelet 

that displays decompositions at every π/4 angle, angles 

are doubled at different scales in curvelet transform 

(Majumdar and Nasiopoulos, 2008). Thus, this method 

induces a fine  directional  decomposition. The  curvelet 

can represent curves using a few coefficients, as shown 

in Fig. 5. The additional angles enhance curve 

representation, especially given curve-like edges 

(Jianwei and Plonka, 2010). These edges and 

represented corners are considered in Kausalya and 

Chitrakala (2012) and Bahashwan and Abu Bakar 

(2015). Thus, the hypothesis of this study is that using 

curvelet transforms can aggravate the discontinuity 

problem of curved edges (Guha and Wu, 2010). 

Moreover, the additional directions increase the 

containment of the curvelet coefficients of pixels 

belonging to a particular object. 

 

APPROACH 
 

The current paper proposes a new method for 

crowd estimation based on a customized difference 

image obtained by curvelet transform. The new method 

applies the transform to two sequential frames and 

employs different customized inverse curvelet 

transforms with distinct difference scales, as in the 

system architecture depicted in Fig. 6. 

 
Pre-processing: The case study is conducted it Bab 
Assalam gate which naturally close to a bright outdoor 
area. Thus, the resultant high intensity values for gate-
close objects can affect the final difference images and 
consequently, the extracted features. Hence, a 
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Fig. 6: System architecture 

 

     
 

                        (a)                                         (b) 

 

 
 
(c) 

 
Fig. 7: (a) Original grayscale frames, (b) normal difference 

image and (c) difference image obtained using the 
curvelet transform 

 

     
 

(a)                                      (b) 

 
Fig. 8: Customized inverse curvelet transform; (a)  -�

� and (b) 

binarized -�
� 

 

preprocessing step must be conducted with a 

normalizing algorithm. Our approach employs a 

histogram equalization to improve contrast. This 

equalization non-linearly maps the intensity values to 

expand the range of intensities in the image. 

 
Difference image with customized curvelets: The 
hypothesis of this study is that using the difference 
image derived from two sequential frames via curvelet 
transform enhances the difference image. Figure 7 
illustrates a comparison between the normal difference 
images extracted from two grayscale frames from our 
case study dataset and those obtained by the use of the 
curvelet transform. This difference image is derived by 
applying the curvelet transform to two sequential 

frames and by subjecting the decomposed difference to 
inverse curvelet transform. The difference image 
between the two frames produces a silhouette of the 
moving objects. This silhouette image is useful for 
further calculations involving moving objects alone. 
Hence, any improvements to such difference images 
enhances results. This outcome is the main advantage 
of using curvelet transform. However, different scales 
in the curvelet-decomposed images preserve various 
types of information. Applying customized inverse 
curvelet transform to the chosen scales can enhance 
feature extraction. Moreover, the new sub-scale 
difference images generate additional information 
through the supply of accurate features given that 
curvelet transform preserves more accurate information. 

The proposed algorithm is shown in Fig. 7. The 
algorithm first decomposes two consecutive frames 

(�(.�and �() using curvelet transform to produce /(.� 

and /(, respectively. These variables are the 
representations of the decomposed curvelet domain 
image obtained from the two frames. The number of 
decomposed images depends on the number of scales 
and orientations in curvelet transform. Second, the 
difference between the two curvelet coefficients is 
determined. A simplified version of the foreground in 

its new band /0,1	2, �
 may be generated by subtracting 
the common regions in all decomposed curvelet 
transform coefficients:  
 

/0,1 = /(
0,1

− /(.�
0,1

                              (2) 

 
where,  
S  = The scale of the curvelet decomposed image  
O = The orientation within this scale 

 

Rather than obtaining a difference image directly, 

the algorithm performs two customized inverse 

transforms. The first transformation discards the 

coefficients for first scale (3 = 1) alone, whereas the 

second discards the other scales (3 ≠ 1). The two 

resultant difference images 6-� and 6-�are employed as 

sources for feature extraction. 
 
Feature extraction: The following features are 
extracted from relevant customized inverse curvelet 

transform   images.   Figure  8  shows  a sample -�
�and a 

binarized -�
�. To overcome the perspective distortion 

effect, the density map is used to weight the customized  
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Table 1: Level of service 

Level of service Range of density (people per unit area) Number of people Group 

Restricted flow 0.5-0.80 9-16 Low 
Dense flow 0.81-1.26 17-25 Moderate 
Very dense flow 1.27-2.0 26-32 High 
Jammed >2.0 >33 Very high 

 
Table 2: Final classification for both systems 

Range of people (class) No. of frames in class 

Curvelet difference images 
------------------------------------------------------- 

Normal difference images 
------------------------------------------------------- 

True detection True detection (%) True detection True detection (%) 

Low 192 192 100 26 13.5 
Moderate 210 147 70.0  110  50.0 
High 429 394 91.8 265 61.8 
Very high 269 268 99.6 97 32.4 

 

difference images generated at a certain level. The first 

difference image -�
� is utilized as a source for extracting 

edges and corners. The total number of edges and 

corners detected in the edge image is weighted and then 

featured. By contrast, the weighted binarized version of 

the second difference image -�
� produces a relative area 

feature. The final classification is the result of using a 

back-propagation neural network. Three equivalent 

features are applied to the comparison test, namely, the 

binarizationblob sizes, total edges and corner points. 

However, this test is conducted on the normal 

difference images alone.  

 

Density calculation and classification: Many methods 
have been developed to estimate crowd density. The 
estimation may be represented in the form of an exact 
count of a number of people per unit square, in 
percentage levels, or even in density classes. The level 
of service defined by Polus et al. (1983) classifies 
crowds according to the occupied area. On the basis of 
the range of average area occupancy, five groups of 
densities (namely, very low, low, moderate, high and 
very high crowd) are defined. However, our data set 
does not include very low crowd images. Thus, this 
group density has been ignored as shown in Table 1. 

 

EXPERIMENTAL RESULTS 

 

The proposed algorithm incorporates the enhanced 

difference images using curvelet transform. To 

illustrate the enhanced and the final results, two main 

comparison tests are conducted for evaluation, namely, 

crowd estimation based on the proposed algorithm and 

a second test based on normal difference images. For 

the proposed algorithm, four scales are used for 

curvelet transform. These scales consist of 1, 8 and 16 

angles for the first, second and third scales, respectively 

and of one fine level at the final scale. Both tests are 

performed with the Holy Haram dataset, which contains 

1,100 frames with five frames per second. Each frame 

is 720×576 pixels. Table 2 illustrates the true 

classification of the system in comparison with actual 

ground truth for all tests. Figure 9 compares the true 

and false classifications among classes. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
Fig. 9: Chart that compares true, false and missed detection 

rates 

 

The overall system accuracy of the proposed 

system is 91% when curvelet transform is utilized. The 

accuracy obtained with the normal difference image is 

45%. The calculation time required by the testing 

system for extracting features from a sub-difference 

image depends on frame size. The time required by 

both forward and inverse curvelet transforms is 1.125 

sec, whereas the system for normal difference images 

requires 0.37 sec. 

 

CONCLUSION 

 

This study presents a method that is independent of 

background modeling. This new method can handle the 

perspective distortion problem and its main advantage 

is its capability to extract an enhanced version of the 

difference image. Curvelets can customize difference 

images into different versions with varied features for 

further calculation. Thus, the proposed method is 

suitable for situations wherein background modeling 

techniques are lacking and wherein scene backgrounds 

change constantly. Curvelet difference images are 

informative and generate good features that are not 

limited to those presented in this study. This success 

encourages the use of the different versions of 

decomposed curvelet images. 
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