A Survey and Analysis of Security Issues on RSA Algorithm
Kunal Gagneja and K. John Singh
School of Information Technology and Engineering, VIT University, Vellore, Tamil Nadu, India

Abstract: RSA is used for remote login session, multimedia, credit card payment systems and email security. Key lengths are getting longer in RSA at an exponential phase without solving security issues. According to NIST key management guidelines, 15360 bit RSA is equivalent to 256-bit symmetric key in terms of strength. In case of small messages, even key would be longer than the message. Generally, security is calculated only on the basis of brute force attack and advancements in algorithms, hardware and software architectures are ignored. In this study, problems are identified based upon mathematical architecture of RSA and same observations are used in removal of defects.

Keywords: Acoustic signals, boneh-durfee attack, Chinese remainder theorem, coppersmith attack, quantum computer, wiener attack

INTRODUCTION

Public key cryptography is a concept in which there is one public key and one private key. Key used for encryption is called public key and is known to everyone and the key which is used for decryption is called private key and is known only to receiver. Security can be enhanced by combining public key with enveloped public key encryption but it complicates and slows the algorithm. Public key cryptosystem is a decades old concept and every public key cryptosystem has one or the other vulnerability. Public key encryption systems need a certification authority which can be a bank, charted accountant, lawyer or government. If certification authority gets compromised or is unfaithful, then entire system becomes insecure.

Architecture of Public key cryptosystems which involve factoring large numbers, discrete logarithms and elliptic curves makes them slower than symmetric key algorithms. There is a long list of insecure public key algorithms, for example Diffie Hellman (1976) which had been put forward in 1976. It is only limited to key exchange and does not have any method for encryption or decryption. ElGamal is another public key algorithm which is insecure in case key length is shorter than 2048 bits. Paillier is one of public key encryption algorithms which is insecure against adaptive chosen ciphertext attack. DSA has a disadvantage of doing only signatures and is patented.

MD2 is another public key cryptosystem which is vulnerable to pre-image attack having time complexity equivalent to 2^{104} applications of compression function. In 2008, preimage attack had been further refined with time complexity of 2^{73}. MD2 had been found vulnerable to collision attack in 2009 with time complexity of $2^{63.3}$ as compared to $2^{65.5}$ for birthday attack. Similarly MD4, MD5 and MD6 had one or the other vulnerabilities. Basis of RSA had been public key cryptography which is very old and dates back to 60's. A system equivalent to RSA has been developed i.e., ancestor of RSA is also too old. It is impossible for RSA to match with modern day improvements in computer architecture. It is just a matter of years when public key cryptography will be outdated because of lattice cryptography, quantum computing, DNA computing and photon computing. It is possible to break public key cryptography by quantum computer (Johnson et al., 2011).

LITERATURE REVIEW

Mathematical weaknesses in RSA: RSA had been broken for the first time just nineteen days after the announcement of RSA factoring challenge. Prizes from one hundred to fifty thousand dollars were offered to cryptographers who could break RSA, but it proved insecure. Brute force, mathematical attacks, timing attacks and chosen ciphertext attacks are possible approaches to attacking RSA. Security of RSA depends on correct implementation of algorithm, adequate use of algorithm, key generation and value of modulus (n), where n is modulus for both public and private keys.

It requires a key distributor or big brother to distribute keys. It can be a bank, charted accountant or government. Big brother can eavesdrop the entire communication or even secretly sell keys. They all...
work after taking license from government. There were
rumours about involvement of NSA in design of RSA
right from its invention. Interestingly RSA became
popular in spite of being slow and security issues. In
2013, RSA security LLC issued a warning against use
of its own Dual_EC_DRBG random number generator
which has been default in RSA’s BSafe cryptographic
toolkit because of backdoor by National Security
Agency. Not a surprise that company implemented it
even if it had been slow. RSA is 100 to 1000 times
slower than DES and 10,000 times slower than AES. It
puts limitations on implementation of RSA on devices
with less hardware. NSA had been in controversy over
inserting backdoors in public key algorithms known
only to them. NSA had put restrictions on export of
cryptographic products which exist even today on some
algorithms. Interestingly, export restrictions were
relaxed in 2000 when RSA had become too old. Thus it
is easy for public key cryptosystems to get
compromised either by NSA or by key issuing
authority. RSA has the property that the product of two
ciphertexts is equal to the encryption of the product of
the respective plaintexts. Just apply permutation and
combination with combinations of plaintexts and
ciphertexts to create new attack.

In RSA algorithm public key is the key used for
encryption and private key is used for decryption
(Quisquater and Couvreur, 1982). Thus an identity of
sender cannot be kept secret in network because an
adversary can still learn who is transmitting even if he
can’t see which public key it is. However digital
signature can be applied to RSA but it does not solve
impersonation. Impersonation can be done in digital
envelope which is secure electronic data container that
protects data through encryption and authentication.
There is no authentication even if AES and RSA are
used together (Shuang-Hua, 2011). Secret key and
public key are just two layers of digital envelope. An
eavesdropper can simply buy prime numbers and
multiply them and use permutation and combination to
match with private key.

Sender should check the functions used in
implementation of padding (RSAES-OAEP should be
preferred). Otherwise public key will encrypt to the
same output every time (James, 2011). RSAES-OAEP
is an encryption scheme in which padding is used and it
is securing against adaptive chosen cipher text attacks.
Security of RSAES-OAEP depends on random nature of
the output of the mask generation function. It further
depends on random nature of the underlying hash
function. A padding scheme like OAEP must be used to
increase security. Unfortunately it is missing in many
implementations of RSA and is prone to chosen cipher
text attacks. OAEP adds an integrity check and hides
structure of the message. RSAES-OAEP only becomes
insecure if the octet-aligned OAEP process is translated
to integers modulo n in RSA has a particular
mathematical structure that can potentially be
exploited without solving the RSA problem directly. A
procedure based on Chinese remainder theorem can
accelerate the decryption process because it makes use
of mod function. Two large primes can be multiplied to
match with public key using hit and trial method and
one of them is private key. Distance between two prime
numbers increases as the numbers become bigger. Thus
it is easy to apply theory of probability as prime
numbers grow bigger. RSA becomes vulnerable when
size of one of the prime numbers used in calculation of
public key is small. It is vital for RSA securities that
two very large prime numbers be generated that are
quite far apart. Generating composite numbers, or even
prime numbers that are close to each other makes RSA
totally insecure. Same value of mod (n) should not be
used against large number of users (Bruce, 1995). If
public key and algorithm are known then can RSA
simply be reversed to get plaintext. Thus it is difficult
and insecure to implement RSA in environment with
constrained hardware because there is limit to size of
prime numbers which can be applied.

Public keys should be authenticated: It is difficult to
specify particular public key belongs to which user
without authentication. Authentication procedure is
another problem with RSA. It happens when signature
S is not valid cryptosystem of sender’s enciphering key
(Alida, 1991). Increase in key length does not
necessarily mean increase in protection against brute
force attack. It is because of law of diminishing returns
as shown in Fig. 1 in which X axis shows increase in
key length and y axis shows corresponding increase in
work factor in doing brute force attack.

RSA slowed down when it is implemented in
hardware (Bruce, 1995). It puts restriction on key
length and message length because of constraints of
time. It can be concluded that RSA will become
insecure against brute force attack because of Moore’s
law. RSA is slower than secret key method, but can be
used in conjunction with the secret key to make it more

![Fig. 1: Law of diminishing returns of RSA](image-url)
efficient. Generally it is assumed that algorithm is known to everyone but key is kept secret, but public key algorithms have less speed. Public key and secret key algorithms can be combined to get advantages of both. However it is easy to do brute force attack on secret key algorithms. The security of RSA is dependent on the assumption that it is difficult to generate the private key from the public keys and the modulus n.

Mod function is not one-to-one (William, 2005; Sengadir, 2009). It is possible for multiple mods to give same result. For example 1998*1999*2000 mod 7 = 4 and 2^2006 mod 7 = 4. Thus the mod value of both gives same output.

It is not practical to use longer key lengths to encrypt short messages or files. One time pad is broken because the Soviets repeated the keys. There are two ways to solve this problem. First is to add padding for short messages which is dependent on generation of pseudo random numbers and are predictable. Second is to increase number of public keys with increase in number of users and number of messages. This can possibly lead to repetition of prime numbers which is itself insecure. Backbone of RSA security is length of prime numbers.

A power fault attack on RSA is successful in 2010. RSA digital signatures are based on CRT which can be subjected to power and fault attacks. Modular exponentiation when combined with CRT is prone to both the attacks (Sung-Kyoung et al., 2011). Chosen plaintext attack is possible in RSA (Tal, 1998). Chosen text attack can also be done (Desmedt and Odlyzko, 1986). In this attack, cryptanalyst has to obtain from plaintext versions of some carefully chosen cipher texts. It can be further processed to obtain further plaintext without additional resources. Till now, there is no such proof that security of RSA is only dependent on factoring public key. There are ways in which RSA can be crypt analysed without factoring public key. If small encryption exponent is used and same message is forwarded to multiple destinations, then RSA becomes insecure according to research done by Knuth. Suppose n is the public modulus of user A and public encryption exponent is E. Assuming that ciphertext has been intercepted and cryptanalyst wishes to recover plaintext m. A random integer x is chosen as:

\[C \equiv x^e \mod n \]

If it is sent to receiver to decrypt by using the pair (E, n) for signatures. The eavesdropper must also agree to sign challenge messages. Alternatively user receiver can discard decrypted messages which appear meaningless. Then we obtain Eq. (1) as follows:

\[(c^e)^d \equiv c^d x \equiv mx \mod n \tag{1} \]

Thus n can be recovered. Any single ciphertext can be deciphered by using receiver decryption mechanism.

Coppersmith partial key exposure attack is possible on RSA. In it if few bits are discovered, then entire plaintext can be discovered (Mollin, 2002). Assume n = pq is modulus of length l. If least significant bit or most significant bit of is known. Its value can be used to factor n. Partial key exposure attacks to have been successfully implemented on RSA (Mollin, 2002). RSA is insecure if Carmichael numbers are used as values of p and q. Probability of their occurrence is rare but increasing. Nowadays, messages and keys are getting longer. Factoring a number to check if it is Carmichael number or testing it for Carmichael numbers is another overhead.

Computing attack is possible in RSA as shown in Eq. (2):

\[n = p \times q \tag{2} \]

Also Eq. (3) holds true:

\[\phi(n) = (p - 1)(q - 1) \tag{3} \]

Substituting \(q = n/p \) we get Eq. (4):

\[p^2 - (n - \phi(n) + 1)p + n = 0 \tag{4} \]

The two roots of equation are p and q, factors of n (Rosen, 1999). Because of better algorithms, it has become easier to factor number and test them for primarily. Smart card implementations of RSA are slow. RSA is slower than symmetric key algorithms (Bruce, 1995). An adaptive chosen-ciphertext attack on a smart card implementation of the RSA decryption algorithm in the presence of side-channel information leakage has been performed successfully. Information leakage through power consumption variation has been studied. Simple Power Analysis (SPA) of the smart card revealed macro characteristics caused by improper implementation of Chinese remaindering (Roman, 2002). Smart cards can be reverse engineered using chip testing equipment. A glitch attack against RSA has been performed in which implementation based on the Chinese Remaindering Theorem (CRT) could recover the private key using only one message and corresponding faulty signature. Furthermore, the implementation often leaks additional side-channel information. Non-invasive attacks have been proposed based on timing information, a device’s power consumption and electromagnetic radiation.

Acoustic attacks had been performed on RSA. It had been successful with 4096 bit RSA in 2013. Attack had been carried out with a microphone and a rudimentary hardware. This side channel attack has been carried out by Daniel et al. (2013) (who co-invented RSA) and Eran Tromer. Researchers listened
to the high-pitched sounds from 10 to 150 KHz produced by computer as data had been decrypted. Low and band pass filters were used to separate sounds from background. Acoustic signals were generated by CPU's voltage regulator and were heard at a distance of thirteen feet. Even a smartphone could successfully get acoustic signals at a distance of thirty centimetres. The hardware used is shown in Fig. 2 (Daniel et al., 2013) which is equipment used for capturing noise from decryption computer. Figure 3 (Daniel et al., 2013) is an illustration of acoustic signals captured after the attack. Bruel and Kjaer 4939 microphone capsule had been used. Horizontal axis is frequency (0-310 KHz) and vertical axis is time (3.7 sec). Intensity is proportional to instantaneous energy in that frequency band.

Wiener attack and exponent attacks are also possible on RSA (Mollin, 2002). Decryption exponent d satisfies $ed = 1 \mod \varphi(n)$. The value of $\varphi(n)$ is equal to $(p-1)(q-1)$ according to Euler phi function. Where p and q are two prime numbers chosen by Bob. For modular inverse to exist, encryption exponent e and $\varphi(n)$ must be relatively prime to each other. Assuming that private key pair is (d, n). Applying fermat's little theorem, ciphertext can be obtained by applying Eq. (5):

$$C^d \equiv (M^e)^d \equiv M^{ed} \equiv M \mod n$$ \hspace{1cm} (5)

Applying Euclidean algorithm, secret key can be recovered if factorization of n is known. According to Wiener's theorem, value of $n = pq$. If value of p lies between q and 2q:

$$q < p < 2q$$

And if value of $d < \frac{n^2}{3}$, value of d can be recovered.

RSA is prone to decryption exponent attack and Weiner's low decryption exponent attack (Rosen, 1999). An exponent attack on RSA can be performed if two or three exponents are known. Assuming x, y, z are unknown parameters and two or three exponents (e_1, e_2, e_3) are known with modulus (n). Decryption exponent attack is continuation of Guo's continued fraction attack and Blomer and May lattice-reduction basis attack. The following equation needs to be satisfied:

$$ex - \varphi(n)y = z$$ \hspace{1cm} (6)

It is easier to perform this attack if value of d is small. According to this attack RSA can be totally broken if the following equation is satisfied:

$$d < n^{0.292}$$ \hspace{1cm} (7)

Boneh-Durfee attack had been successfully done on RSA. Partial Key exposure attacks are also possible in RSA. They are based on knowledge of some bits of secret decryption exponent d (Wenbo, 2003). Coppersmith attacks are possible in RSA (Menezes et al., 1996). Coppersmith theorem is used for factoring polynomials. It provides all roots of (f) modulo (n) that are less than $X = n^{\frac{1}{d}}$ for some $\varepsilon \geq 0$. According to Coppersmith theorem n, is an integer and $f \in \mathbb{Z}[x]$ is a monic polynomial of degree d. This theorem can find all integers satisfying $f(x) = 0 \mod n$. Running time is less for smaller values of X. Coppersmith theorem can find small roots of polynomial modulo a composite n. If key modulus takes selected is long, then processor takes more time to generate keys (James, 2006). Timing attacks are possible on some implementations of RSA decryption. RSA is prone to common modulus attack,
chosen ciphertext attack, low encryption exponent attack and low decryption exponent attack (Bruce, 1995). Bit-security is low for RSA (Van Tilborg and Jajodia, 2011).

Slow speed and CPU performance of RSA:
Experimentally, key works fine on a 3 GHz desktop, it may be slow on smartphone, or an access point. The following table had been drawn after running every test ten times. Minimum and maximum runtime had been observed. Table 1 shows how performance of RSA degrades in terms of execution time in seconds with change in hardware. RSA is totally inconvenient to use in low hardware devices. The following tables shows performance of RSA on different platforms. Table 2 is another comparison of RSA in terms of execution time in seconds when RSA had been executed on different hardware. In addition to above, key sizes are growing at exponential phase making it difficult to implement RSA in future, which is illustrated in Fig. 4. Key length is shown on y axis and year is shown in x axis. From these tables, it can be concluded that RSA is slow, putting limitations on its implementation.

Comparative analysis of severity of these attacks:
Since, there is only one big brother for key distribution, there were many instances in past when keys were sold or leaked i.e., threat from it is real. Prime numbers are getting larger and number of known prime numbers is also increasing but the rate discovery of new prime numbers has remained almost constant. In future, it will be more difficult to match product of two prime numbers with public key. Power fault attacks were implemented on other encryption algorithms too. It is highly severe and can only be solved only by using DC current provided by battery instead of AC current. Chosen text attacks and chosen plaintext attacks are not a serious concern as they can be easily solved by padding. Adaptive chosen-cipher text attack on smart card can be a serious threat as it was done on less

Table 1: Performance of RSA on different platforms

<table>
<thead>
<tr>
<th>4kbit CPU seconds</th>
<th>1.8 GHz Celeron T3000/HP laptop</th>
<th>0.7 GHz ARMv6 (Raspberry Pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key-gen</td>
<td>1.4-12.3</td>
<td>50.2-21.9</td>
</tr>
<tr>
<td>Sign</td>
<td>0.124-0.136</td>
<td>1.95-1.98</td>
</tr>
<tr>
<td>Verify</td>
<td>0.004-0.012</td>
<td>0.3</td>
</tr>
<tr>
<td>Encrypt</td>
<td><0.001-0.004</td>
<td>0.317-0.320</td>
</tr>
<tr>
<td>Decrypt</td>
<td>0.132-0.136</td>
<td>0.07</td>
</tr>
<tr>
<td>Sign-encrypt</td>
<td>0.132-0.140</td>
<td>1.96</td>
</tr>
<tr>
<td>Verify-decrypt</td>
<td>0.132-0.140</td>
<td>2.04</td>
</tr>
<tr>
<td>Sign-encrypt (10kbit recipient)</td>
<td>0.13-0.14</td>
<td>2.04</td>
</tr>
<tr>
<td>Verify-decrypt (10kbit receiver)</td>
<td>0.14-0.14</td>
<td>2.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4kbit CPU seconds</th>
<th>(0.6 GHz ARMv7 OMAP 3430 ARM Cortex A8 (Nokia N900))</th>
<th>0.26 GHz MIPS Broadcom BCM4704 (Asus WL500gP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key-gen</td>
<td>29-221</td>
<td>139-334</td>
</tr>
<tr>
<td>Sign</td>
<td>1.57-1.64</td>
<td>3.50-3.58</td>
</tr>
<tr>
<td>Verify</td>
<td>0.016-0.039</td>
<td>0.07-0.08</td>
</tr>
<tr>
<td>Encrypt</td>
<td>0.016-0.023</td>
<td>0.06-0.09</td>
</tr>
<tr>
<td>Decrypt</td>
<td>1.55-1.60</td>
<td>3.47-3.52</td>
</tr>
<tr>
<td>Sign-encrypt</td>
<td>1.59-1.62</td>
<td>3.55-3.59</td>
</tr>
<tr>
<td>Verify-decrypt</td>
<td>1.58-1.60</td>
<td>3.50-3.54</td>
</tr>
<tr>
<td>Sign-encrypt (10kbit recipient)</td>
<td>1.66-1.71</td>
<td>3.79-3.86</td>
</tr>
<tr>
<td>Verify-decrypt (10kbit receiver)</td>
<td>1.67-1.69</td>
<td>3.74-3.78</td>
</tr>
</tbody>
</table>

Table 2: Performance of RSA on different hardware

<table>
<thead>
<tr>
<th>10 bit key CPU seconds</th>
<th>1.8GHz Celeron T3000 (HP laptop)</th>
<th>0.7 GHz ARM (Raspberry Pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key-gen</td>
<td>47-430</td>
<td>>2000</td>
</tr>
<tr>
<td>Sign</td>
<td>1.692-1.704</td>
<td>18.9</td>
</tr>
<tr>
<td>Verify</td>
<td>0.004-0.012</td>
<td>0.368</td>
</tr>
<tr>
<td>Encrypt</td>
<td>0.004-0.012</td>
<td>0.374</td>
</tr>
<tr>
<td>Decrypt</td>
<td>1.680-1.688</td>
<td>18.8</td>
</tr>
<tr>
<td>Sign-encrypt</td>
<td>1.696-1.712</td>
<td>18.9</td>
</tr>
<tr>
<td>Verify-decrypt</td>
<td>1.68-1.70</td>
<td>20.3</td>
</tr>
<tr>
<td>Sign-encrypt (4kbit recipient)</td>
<td>1.69-1.70</td>
<td>18.9</td>
</tr>
<tr>
<td>Verify-decrypt (4kbit sender)</td>
<td>1.68-1.70</td>
<td>18.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 bit key CPU seconds</th>
<th>0.6GHz ARMv7 OMAP 3430 ARM Cortex A8 (Nokia N900)</th>
<th>0.26GHz MIPS Broadcom BCM4704 (Asus WL500gP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key-gen</td>
<td>448-6375</td>
<td>2135-17609</td>
</tr>
<tr>
<td>Sign</td>
<td>18.8-19.0</td>
<td>44.61-44.77</td>
</tr>
<tr>
<td>Verify</td>
<td>0.078-0.102</td>
<td>0.21-0.25</td>
</tr>
<tr>
<td>Encrypt</td>
<td>0.086-0.109</td>
<td>0.23-0.26</td>
</tr>
<tr>
<td>Decrypt</td>
<td>18.8-18.9</td>
<td>43.60-43.72</td>
</tr>
<tr>
<td>Sign-encrypt</td>
<td>18.9-19.3</td>
<td>43.89-44.07</td>
</tr>
<tr>
<td>Verify-decrypt</td>
<td>18.83-19.05</td>
<td>44.41-44.70</td>
</tr>
<tr>
<td>Sign-encrypt (4kbit recipient)</td>
<td>18.81-19.25</td>
<td>44.38-44.52</td>
</tr>
<tr>
<td>Verify-decrypt (4kbit sender)</td>
<td>18.84-18.95</td>
<td>44.26-44.42</td>
</tr>
</tbody>
</table>

Fig. 4: Key lengths of RSA

Fig. 5: Stages in secure implementation of RSA

hardware and needs DC power and padding together. It is difficult to have DC power every time smart card is used. Acoustic attacks were done in complete silence and it would be difficult to achieve the same in real life situations. Exponent attack can be avoided by longer non repeating keys which is easy to implement. Coppersmith attack can only work for small value of n.

Enhanced RSA: Generally encryption and decryption are done in base 2. Data had been converted into a random base known only to sender and reviver. RSA is a block cipher in which padding is applied. Random bits were added in every block to make padding more effective. XOR and shuffling were added because many of the standardised algorithms are also using these mathematical functions. Multiple compression had been done before encryption. It makes cryptanalysis difficult and gives better compression ratio as compared to ordinary compression algorithms. Confusion and diffusion must be added in the end to avoid statistical attacks. Power and fault attacks can be solved by modular exponentiation and CRT recombination algorithms. Arithmetic operations were replaced by logical ones to stop errors in CRT recombination step. Because CRT-RSA algorithm does not need knowledge of public exponent, it is implemented in better way. After adding confusion and diffusion, Diophantine equation had been added for more security. In the proposed new RSA algorithm, it had been checked at the time of encryption if it could be broken using Diophantine equation. It is a polynomial equation with two or more unknowns such that only integer solutions are found (it is applicable to RSA as we will only use integers as keys). Diophantine equation can be used for cryptanalysis of RSA. Chinese remainder theorem provides important example of linear systems of Diophantine equations. Let y1, y2, ..., yk be k pairwise coprime integers greater than one, a1, ..., ak be k arbitrary integers and X be the product y1 ··· yk. The Chinese remainder theorem asserts that the following linear Diophantine system has exactly one solution (y, y1, ..., yk) such that 0≤x<Y and that the other solutions are obtained by adding to x a multiple of Y:

\[
x = a1+x1*y1 \\
. \\
. \\
. \\
x = ak+xk*yk
\]

Congruence has been used for error detection and correction in next phase. A small code has been added in next step to modify encrypted file to avoid rubber-hose cryptanalysis or purchase key attack. Cryptanalysis proved it to be more secure than earlier implementation. Figure 5 shows stages of implementation of RSA after removing security drawbacks.

To improve security, use of same key had been avoided for encryption and signing. A blind message had been prevented from getting encrypted or signed. Input was formatted before getting encrypted or signed. It had been ensured that length of padding had been at least 8 bits and same padding had not been repeated. If any error had been discovered in digital signature or
decryption by receiver, then only error message had
been returned instead of decrypted or signed message.

CONCLUSION

Dual_EC_DRBG random number generator had
been removed to make it more difficult for NSA to spy.
Quantum computing is still in experimental stage, so
RSA can be assumed to be secure against it for at least
few years but not decades. Moore's law will be replaced
by new Moore's law somewhere between 2020 and
2030. Calculations based on RSA on quantum computer
will only be possible after its implementation. RSA has
got security advantages of other algorithms like aes, des
etc because of introduction of xor and shuffling. It is
expected that file size would increase in future which
would make adding confusion and diffusion easier.
Since RSA is slow, doing brute force attack on it will
take more time.

REFERENCES

Bruce, S., 1995. Applied Cryptography: Protocols,
Algorithms and Source Code in C (cloth). 2nd
Daniel, G., S. Adi and T. Eran, 2013. RSA key
extraction via low-bandwidth acoustic
cryptanalysis. IACR cryptology ePrint Archive,
December 18.
Desmedt, Y. and A.M. Odlyzko, 1986. A chosen text
attack on the RSA cryptosystem and some discrete
logarithm schemes. In: Williams, H.C. (Ed.),
Advances in Cryptology-CRYPTO' 1986. LNCS
James, H.C., 2006. IPSc p Virtual Private Network
James, M., 2011. A chosen ciphertext attack on RSA
Optimal Asymmetric Encryption Padding (OAEP)
as standardized in PKCS #1 v2.0. Proceeding of the
21st Annual International Cryptology Conference on
Advances in Cryptology-CRYPTO,
August 2, pp: 230-238.

Johnson, M.W., M.H.S. Amin, S. Gildert, T. Lanting, F.
Hamze et al., 2011. Quantum annealing with
Handbook of Applied Cryptography. 1st Edn.,
Mollin, R.A., 2002. RSA and Public Key
Cryptography. 2nd Edn., Chapman and Hall/CRC,
Boca Raton, FL.
Quisquater, J.J. and C. Couvreur, 1982. Fast
decipherment algorithm for RSA public-key
Roman, N., 2002. Public Key Cryptography. 1st Edn,
York.
Sengadir, T., 2009. Discrete Mathematics and
Combinatorics. 5th Edn., Pearson Education,
Shuang-Hua, Y., 2011. Internet-Based Control
Systems: Design and Applications. 1st Edn.,
Sung-Kyoung, K., H.K. Tae, H. Dong-Guk and H.
Seokhie, 2011. An efficient CRT-RSA algorithm
secure against power and fault attacks. J. Syst.
Software, 84(10): 1660-1669.
Tal, R., 1998. A simplified approach to threshold and
proactive RSA. Proceeding of the 18th Annual
International Cryptology Conference, NCS 1462,
August 23-27, pp: 89-104.
Wenbo, M., 2003. Modern Cryptography: Theory and
Practice. 1st Edn., Prentice Hall, Upper Saddle
Principles and Practices. 4th Edn., Pearson
Education, New York.