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Research Article 
A Survey of Fault-tolerance in Cloud Computing: Concepts and Practice 
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Abstract: A fault tolerance is an important property in order to achieve performance levels for important attributes 
for a system’s dependability, reliability, availability and Quality of Service (QoS). In this survey a comprehensive 
review of representative works on fault tolerance in cloud computing is presented, in which general readers will be 
provided an overview of the concepts and practices of a fault-tolerance computing. Cloud computing service 
providers will rise and fall based on their ability to execute and deliver a satisfactory QoS in primary areas such as 
dependability. Many enterprise users are wary of the public clouds' dependability limitations, but also curious about 
the possibility of adopting the technologies, designs and best practices of clouds for their own data centers such as 
private clouds. The situation is evolving rapidly with public, private and hybrid clouds, as vendors and users are 
struggling to keep up with new developments. 
 
Keywords: Availability, cloud computing, fault tolerance, MTBF, redundancy 

 
INTRODUCTION 

 
Cloud computing is one of today’s most exciting 

technologies because of its capacity to lessen costs 
associated with computing while increasing flexibility 
and scalability for computer processes. During the past 
few years, cloud computing has grown from being a 
promising business concept to one of the fastest 
growing sectors of the IT industry. On the other hand, 
IT organizations have expressed concerns about critical 
issues such as dependability that accompany the 
widespread implementation of cloud computing. 
Dependability in particular is one of the most debated 
issues in the field of cloud computing and several 
enterprises look warily at cloud computing due to 
projected dependability risks. Moreover also, there are 
three important attributes of reliability, availability and 
QoS of the cloud, as show in Fig. 1. Although each of 
those issues are associated with usage of the cloud, they 
will have different degrees of importance. The careful 
examination of the benefits and risks of cloud 
computing is necessary of the viability of cloud 
computing (Sabahi, 2011). The US NIST (National 
Institute of Standards and Technology) defines the 
concept of Cloud computing as follows (Mell and 
Grance, 2011): 

 

• Cloud computing is a model for enabling 
convenient, on-demand network access to a shared 
pool of configurable computing resources (e.g., 
networks, servers, storage, applications and 
services) that can be rapidly provisioned and 

released with minimal management effort or 
service provider interaction.” This definition can be 
represented as shown in Fig. 2. 

 
Fault tolerant systems are a popular research area. 

In recent years for grid computing and disturbed system 
technologies are widely used in many research and 
different applications in dependability. Especially for 
fault tolerance and a monitoring systems. Naixue et al. 
(2009) authors gave a survey on fault tolerant issue in 
distributed systems. Jin et al. (2003) authors only 
considered concentrate on fault-tolerant strategies in 
computational grid. Xiong et al. (2009) considered 
comparing all kinds of adaptive fault detection FD 
schemes in different experimental environments. This 
study presented a comprehensive survey on fault 
tolerance in cloud computing, which will provide 
general readers an overview of concepts and practice of 
a fault-tolerance computing.  

 
MATARIALS AND METHODOLOGY 

 
Concepts of fault tolerance: Fault-tolerant computing 
is a generic term describing redundant design 
techniques with duplicate components or repeated 
computations enabling uninterrupted (tolerant) 
operation in response to component failure (faults).  

There are many applications in which the reliability 
of the overall system must be far higher than that of the 
reliability of its individual components. In such cases, 
designers devise mechanisms and architectures that 
allow the system to either completely mask the effects 
of   a  component   failure  or   recover  from  it quickly  
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Fig. 1: Cloud computing and dependability attributes

 

 
Fig. 2: Cloud computing system 
 

 
Fig. 3: System relationship 

 
enough so that the application is not seriously affected 
(Koren and Krishna, 2010). 
 
Dependability of the system: In the field of software 
engineering, a system is often equated with software, or 
perhaps  with  the  combination  of  computer 
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Cloud computing and dependability attributes (Google trends) 

enough so that the application is not seriously affected 

In the field of software 
engineering, a system is often equated with software, or 

computer  hardware  

and software. Here, we use the term

sense. As shown in Fig. 3, a system

components, both computer related and non

related, that provides a certain service to a user. There 

are two levels at which fault tolerance can be applied:

 

 

 

software. Here, we use the term system in a broader 

system is the entire set of 

components, both computer related and non-computer 

related, that provides a certain service to a user. There 

ce can be applied: 
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Hardware fault tolerance: Measures in hardware fault 
tolerance include: 
 

• Redundant communications 

• Replicated processors 

• Additional memory 

• Redundant power/energy supplies 

 

Software fault tolerance: Changes in program or data 
structures due to transients or design errors are 
examples of software fault tolerance. Mechanisms such 
as checkpoint/restart, recovery blocks and multiple-
version  programs  are often used at this level (Qureshi 
et al., 2004). 

A system is considered dependable if it has a high 
probability of successfully carrying out its specific 
functions. This first presumes that the system is 
available. Furthermore, in order to completely perform 
a specific function of the system, it is necessary to 
define all the environmental and operative requirements 
for the system to provide the desired service. 
Dependability is therefore a measurement of how much 
faith there is in the service given by the system 
(Lazzaroni, 2011). 

The design and implementation of "dependable" 
systems necessitates the appropriate methodology for 
identifying possible causes of malfunctions, commonly 
known as "impediments." The technology to eliminate 
or at least limit the effects of such causes is also 
necessary. Consequently, in order to deal with the 
problem of dependability, we need to know what 
impediments may arise and the technologies to avoid 
the consequences. Systems that utilize such techniques 
are called Faults Tolerant (Lazzaroni et al., 2011). 
Impediments to dependability assume three aspects: 
fault, error and failure. A system is in failure when it 
does not perform its specific function. A failure is 
therefore a transition from a state of correct service to a 
state of incorrect operation service. The periods of time 
when a system is not performing any sort of service at 
all are called outage periods. Inversely, the transition 
from a period of non-service to a state of correct 
functioning is deemed to be the restoration of service. 
As shown in Fig. 4. Possible system failures can be 
subdivided into classes of severity in respect to the 
possible consequences of system failure and its effect 
on the external environment. A general classification 
used in which to separate failures into two categories: 
benign and catastrophic/malicious (Lazzaroni, 2011). 

Constructing a dependable system includes the 

prevention of failures. To attain this, it is necessary to 

understand the processes which may lead to a failure, 

originating from a cause (failure) that may be inside or 

outside the system. The failure may even remain 

dormant for a period of time until its activation. The 

activation of a failure leads to an error that is part of the 

state  of  a  system  that  can  cause a successive failure.  

 
 
Fig. 4: State of system 
 

 
 
Fig. 5: Fault-error-failure chain 

 
The failure is therefore the effect, externally 
observable, of an error in the system. Errors are said to 
be in a latent stat until they become observable and/or 
lead to a state of failure, as shown in Fig. 5. 

Similar failures can correspond to many different 
errors, just as the same error can cause different failures 
(Birolini, 2007). Systems are collections of 
interdependent components (elements, entities) which 
interact among themselves in accordance with 
predefined specifications. The fault-error-failure chain 
presented in Fig. 5 can therefore be utilized to describe 
both the failure of a system and the failure of a single 
component. One fault can lead to successive faults, just 
as an error, through its propagation and thus causing 
further errors. A system failure is often observed at the 
end of a chain of propagated errors. 
 
Dependability attributes: The attributes of 
dependability express properties which are expected 
from a system. Three primary attributes are: 
 

• Reliability 

• Availability 

• Safety 
 
Other possible attributes include: 
 

• Maintainability 

• Testability 

• Performability 

• Security 
 

Depending on the application, one or more of these 

attributes are needed to appropriately evaluate the 

system behavior. For example, in an Automatic Teller 

Machine (ATM), the  duration  of time in which system  
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Table 1: Availability and the corresponding downtime per year 

Availability Downtime 

90% 36.5 days/years 
99% 3.65 days/years 
99.9% 8.76 h/years 
99.99% 52 min/years 
99.999% 5 min/years 
99.9999% 31 sec/years 

 
is able to deliver its intended level of service (system 

availability) is an important measure. However, for a 

cardiac patient with a pacemaker, continuous 

functioning of the device is a matter of life and death. 

Thus, the ability of the system to deliver its service 

without interruption (system reliability) is crucial. In a 

nuclear power plant control system, the ability of the 

system to perform its functions correctly or to 

discontinue its function in a safe manner (system 

safety) is of greater importance (Dubrova, 2013). 

 

Dependability impairment: Dependability impairment 

is usually defined in terms of faults, errors and failures. 

A common feature of the three terms is that they give 

us a message that something has gone wrong. These 

faults, errors and failures can be differentiated by where 

they have occurred. In the case of a fault, the problem 

occurred on the physical level; in the case of an error, 

the problem occurred on the computational level; and in 

the case of a failure, the problem occurred on a system 

level (Pradhan, 1996). 

 

Reliability vs. availability: Reliability R(t) of a system 

at time t is the probability that the system operates 

without failure in the interval [0,t] given that the system 

was performing correctly at time 0. Availability 

expresses the fraction of time a system is operational. A 

0.999999 availability means that the system is at most 

not operational for one hour over a million hour 

periods. Availability A (t) of a system at time t is the 

probability that the system is functioning correctly at 

the instant of time t. 

 

Steady-state availability: Steady-state availability is 

often specified in terms of downtime per year. Table 1 

shows the values for availability and the corresponding 

downtime. Availability is typically used as a 

measurement for systems where short interruptions can 

be tolerated. Networked systems, such as telephone 

switching and web servers fall into this category 

(Dubrova, 2013). 

 

Availability is not equal to reliability: Availability 

gives information about how time is used, where 

reliability gives information about the failure-free 

interval. Both are described in % values. Availability is 

not equal to reliability except in a theoretical world of 

no downtime and no failures. Availability, in the 

simplest form (El-Damcese and Temraz, 2015), is: 

A = Uptime/(Uptime+Downtime) 
Ai = MTBF/(MTBF+MTTR) 

 

Fault-tolerance vs. high availability: Fault tolerance 

relies on specialized hardware to detect a hardware fault 

and instantaneously switch to a redundant hardware 

component whether the failed component is a 

processor, memory board, power supply, I/O 

subsystem, or storage subsystem. The fault tolerant 

model does not address software failures, which are by 

far the most common reason for downtime. High 

availability views availability not as a series of 

replicated physical components, but rather as a set of 

system-wide, shared resources that cooperate to 

guarantee essential services. High availability combines 

software with industry-standard hardware to minimize 

downtime by quickly restoring essential services when 

a system, component, or application fails. While not 

instantaneous, services are restored rapidly, often in 

less than a minute. The difference between fault 

tolerance and high availability is that a fault tolerant 

environment has no service interruption yes has a 

significantly higher cost, while a highly available 

environment has minimal service interruption (Rohit, 

2014). 

 

Faults, errors and failures: As shown in Fig. 6, a fault 

is a physical defect, imperfection, or flaw that occurs in 

some hardware or software component (Belli and 

Görke, 2012). Examples are short-circuiting between 

two adjacent interconnects: Broken pin or a software 

bug. An error is a deviation from correctness or 

accuracy in computation, which occurs as a result of a 

fault. Errors are usually associated with incorrect values 

in the system state. For example, a circuit or a program 

computed an incorrect value; or incorrect information 

was received while transmitting data. A failure is the 

non-performance of some action which is due or 

expected. A system is said to have a failure if the 

service it delivers to the user deviates from compliance 

with the system specification for a specified period of 

time. A system may fail either because it does not act in 

accordance with the specification, or because the 

specification did not adequately describe its function. 

Not every fault causes an error and not every error 

causes a failure. This is particularly evident in the case 

of software. Some program bugs are very hard to find 

because they cause failures only in very specific 

situations. For example, in November 1985, a $32 

billion overdraft was experienced by the Bank of New 

York, leading to a loss of 5$ million in interest. The 

failure was caused by an unchecked overflow of a 16-

bit counter. In 1994, the Intel Pentium I microprocessor 

was discovered to compute incorrect answers to certain 

floating-point division calculations. 
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Fig. 6: Faults, errors and failures 
 

 
 
Fig. 7: Fault classifications diagram 

 

 

Fig. 8: Fault categories 

 

Practice for fault-tolerance: Fault tolerance is the 

ability of a system to correctly perform its function 

even in the presence of internal faults. The purpose of 

fault tolerance is to increase the dependability of a 

system. A complementary but separate approach to 

increasing dependability is fault prevention. This 

consists of techniques, such as inspection, which has 

the intent to eliminate the circumstances by which the 

faults have arised (Saha, 2003). 

 

Fault classifications: Based on duration, faults can be 

separated into two classifications which are timing and 

state, as shown in Fig. 7: 

 

• Permanent fault: Remains in the system until they 

are repaired. For example, a broken wire or a 

software design error. 

• Transient fault: Starts at a particular time, 

remains in the system for some period and then 

disappears, For example, hardware components 

which have an adverse reaction to radioactivity. 

Also, many faults in communication systems are 

transient. 

• Intermittent fault: Transient faults that occur 

from time to time. For example, a hardware 

component that is heat sensitive meaning it works 

for a time, stops working, cools down and then 

starts to work again. 

• Benign fault: A fault that just causes a unit to go 
dead. 

• Malicious fault: The component makes a 
malicious act and sends different valued outputs to 
different receivers. 

 
A different way to classify faults is by their 

underlying cause, as shown in Fig. 8. 
 

• Design faults: The result of design failures, like 
coding. While it may appear that in a carefully 
designed system all such faults should be 
eliminated through fault prevention, in practice this 
is usually not realistic. For this reason, many fault-
tolerant systems are built with the assumption that 
design faults are inevitable and theta mechanisms 
need to be put in place to protect the system against 
them. 

• Operational faults: Faults that occur during the 
lifetime of the system. 

• Physical faults: Processor failures or disk crashes 
(McKelvin Jr., 2011).  

• Human faults (Errors): An inappropriate or 
undesirable human decision or behavior that 
reduces, or has the potential for reducing, 
effectiveness, safety, or system performance. 
 
Finally, based on how a failed component behaves 

once it has failed, faults can be classified into the 
following categories, as shown in Fig. 9. 
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Fig. 9: Fault classified 

 

• Crash faults: The component either completely 
stops operating or never returns to a valid state. For 
example, a server halts but was working ok until 
the O.S. failure. 

• Omission faults: The component completely fails 
to perform its service. For example, a server not 
listening or buffer overflow. 

• Timing faults: The component does not complete 
its service on time. For example, a server response 
time is outside its specification and a client may 
give up. Response: Incorrect response or incorrect 
processing due to control flow out of 
synchronization. 

 
Byzantine faults: These are faults of an arbitrary 
nature. For example, server behaving erratically, like 
providing arbitrary responses at arbitrary times. Server 
output is inappropriate but it is not easy to determine 
this to be incorrect. Duplicated message due to 
buffering problem is an example. Alternatively, there 
may be a malicious element involved (UK Essays, 
2013). 
 
Fault-tolerant systems: 
Definitions: 
 

• Ideally the system is capable of executing their 
tasks correctly regardless of either hardware 
failures or software errors. 

• A system fails if it behaves in a way which is not 
consistent with its specification. Such a failure is a 
result of a fault in a system component. 

 
What is the meaning of correct functionality in the 

presence of faults? 
 

The answer depends on the particular application 
(on the specification of the system): 
 

• The system stops and doesn’t produce any 
erroneous (dangerous) result/behavior 

• The system stops and restarts after a given time 
without loss of information 

• The system keeps functioning without any 
interruption and (possibly) with unchanged 
performance (Latchoumy and Khader, 2011). 
 

Redundancy: Redundancy is at the heart of fault 
tolerance. Redundancy is the incorporation of extra 
components in the design of a system so that its 
function is not impaired in the event of a failure. All 
fault-tolerant techniques rely on extra elements 
introduced into the system to detect and recover from 
fault components and are redundant as they are not 
required in a perfect system. They are often called 
protective redundancy.  
 
The aim of redundancy: Minimize redundancy while 
maximizing reliability, which are subject to the cost and 
size constraints of the system. 
 
The warning of redundancy: The added components 
inevitably increase the complexity of the overall 
system. Thus it can lead to less reliable systems. 
Therefore, it advisable to separate out the fault-tolerant 
components from the rest of the system. 
 
Types of redundancy: The types of redundancy are 
shown in Fig. 10. 
 
Hardware redundancy: Hardware redundancy is a 
fundamental technique to provide fault-tolerance in 
safety-critical distributed systems (Gray and Siewiorek, 
1991):  
 

• Aerospace applications 

• Automotive applications 

• Medical equipment 

• Some parts of telecommunications equipment 

• Nuclear centers 
 

 
 

Fig. 10: Types of redundancy 



 

 

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015 

 

1371 

• Military equipment, etc 
 
Static redundancy: redundant components are used 
inside a system to hide the effects of faults. For 
example  Triple  Modular Redundancy TMR-3 identical 
subcomponents and majority voting circuits. Outputs 
are compared and if one differs from the other two, that 
output is masked out and assumes that the fault is not 
common  (such  as  a  design error), rather it transient or 
due to component deterioration. To mask faults from 
more than one component requires NMR. 
 
Dynamic redundancy: Redundancy supplied inside a 
component which indicates that the output is in error. It 
provides an error detection facility and recovery must 
be provided by another component. 
 
Hybrid redundancy: A combination of static and 
dynamic redundancy techniques. 
 
Software redundancy: Software redundancy can be 
divided into two groups: 
 
Single-version techniques: Single version techniques 
add a number of functional capabilities to a single 
software module that are unnecessary in a fault-free 
environment. Software structure and actions are 
modified to be able to detect a fault, isolate it and 
prevent the propagation of its effect throughout the 
system. Here, we consider how fault detection, fault 
containment and fault recovery are achieved in a 
software domain: 
 

• Fault detection techniques 

• Fault containment techniques 

• Fault recovery techniques 

• Exception handling 

• Checkpoint and restart 
 
Multi-version techniques: Multi-version techniques 

use two or more versions of the same software module, 
which satisfy the design diversity requirements. For 

example, different teams, different coding languages or 
different algorithms can be used to maximize the 

probability that all the versions do not have common 

faults: 
 

• Recovery blocks 

• N-version programming 

• N self-checking programming 

• Design diversity 
 
Information redundancy: Data are coded in such a 
way that a certain number of bit errors can be detected 
and, possibly, corrected (parity coding, checksum codes 
and cyclic codes). 
 
Time redundancy: The timing of the system is such 
that   if   certain  tasks  have  to  be  rerun  and  recovery  

 
 
Fig. 11: Block diagram of an m-unit series system 

 
operations have to be performed system requirements 
are still fulfilled (Koren and Krishna, 2010). 
 
Reliability evaluation of standard configurations: As 
engineering systems can form various types of 
configurations in performing reliability analysis, this 
section presents reliability analysis of some standard 
networks or configurations (Dhillon, 2007): 
 

Series configuration: A series system is defined as a 
set of N modules connected together so that the failure 
of any one module causes the entire system to fail. As 
shown in Fig. 11, the reliability of the entire series 
system is the product of the reliabilities of its N 
modules. Denoted by Ri(t), the reliability of the module 
is i and Rs(t) the reliability of the whole system: 
 

����� = � ����� 
���                  (1) 
 
where, 
Rs : The series system reliability. 
N : The total number of units in series. 
Ri : The unit i reliability; for i = 1, 2, ……, m. 
 

If module i has a constant failure rate, denoted by 
λi, then, according to Eq. (1), Ri(t) = e�λ�� and 
consequently: 
 

����� = �� � �����
�  = �����                 (2) 

 
where, 
Rs(t) : The reliability of unit i at time t. 
λs(t) : Unit i hazard rate. 
λi  : Unit i constant failure rate. 
 
By substituting Eq. (2) into Eq. (1), we get: 
 

����� = � ����� = �� � �����������                (3) 
 
where, 
Rs(t) = The series system reliability at time t. 
 
Using Eq. (3) in Eq. (4) yields: 
  

��� � = � �� � �������∞

! "� = �
� ������

               (4) 

 
where, 
MTTFs = The series system mean time to failure. 
 
Parallel configuration: A parallel system is defined as 
a set of N modules connected together so that it requires 
the failure of all the modules for the system to fail. The 
system block diagram is shown in Fig. 12. Each block 
in the diagram represents a unit.  
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Fig. 12: A parallel systems with m units 

 

The following expression for the reliability of a 

parallel system is denoted by Rp(t): 

 

�#��� = 1 − � �1 − ������
���                              (5) 

 
where, 
Rp : The parallel system reliability. 
N : The total number of units in parallel. 
Ri : The unit i reliability; for i = 1, 2, ……, m. 

 
If module i has a constant failure rate λi, then in Eq. 

(6), we get: 
 

�#��� = 1 − � �1 − ������
���                              (6) 

 
As an example, the reliability of a parallel system 

consisting of two modules with constant failure rates λ1 
and λ2 is given by: 
 

�#��� = ����� + ���'� − ������(�'��                (7)  

 
where, 
Rp(t) : The parallel system reliability at time t. 
 
Standby system: In the case of using a standby system, 
only one unit operates and m units are kept in their 
standby mode. As soon as the operating unit fails, a 
switching mechanism detects the failure and turns on 
one of the standbys. The system contains a total of (m-
+1) units and it fails when all the m standby units fail. 
For a perfect switching mechanism and standby units, 
independent and identical units, the unit's constant 
failure rates and the standby system reliability is given 
by: 
  

������� = � �����)*+,
�!

���!                (8) 

 
where, 
Rstd(t) : The standby system reliability at time t. 
m : The total number of standby units. 
λ : The unit constant failure rate. 
 
Using Eq. (8) in (9) yields: 
 

��� ��� = � .�����)*+,
�! /∞

! "� = ���
�                (9) 

where,  
MTTFstd = The standby system mean time to failure. 
 
Numerical example: A system has two independent 
and identical units. One of these units is operating and 
the other is on standby. Calculate the system mean time 
to failure and reliability for a 200-h mission by using 
Eq. (8) and (9), if the unit failure rate is 0.0001 failures 
per hour. 
 
Solution: By substituting the given data values into Eq. 
(8), we get: 
 

�����200� 

= � 2�!.!!!���4!!�5�)*��.������'���
�! = 0.9998���!   

 
Similarly, substituting the given data values into 

Eq. (9) yields: 
 

��� ��� = ��(��
�!.!!!�� = 20,000 hours  

 
Thus, the system reliability and mean time to 

failure are 0.9998 and 20,000 h, respectively. 
 
M-of-N systems: An M-of-N system is a system that 
consists of N modules and needs at least M of them for 
proper operation. Thus, the system fails when fewer 
than M modules are functional. The best-known 
example of this type of systems is the triplex, as shown 
in Fig. 13. It consists of three identical modules whose 
outputs are voted on. This is a 2-of-3 system: So long as 
a majority (2 or 3) of the modules produces correct 
results, the system will be functional (Koren and 
Krishna, 2010). 
The system reliability is therefore given by: 
 

�>?@A��� = � B

� C
��> ��D1 − ����E
��             (10) 

 
where, 
 

B

� C = 
!

�
���!�!  
 
The assumption that failures are independent is a 

key to the high reliability of M-of-N systems. Even a 
slight extent of positively correlated failures can greatly 
diminish their reliability. For example, suppose qcor is 
the probability that the entire system suffers a common 
failure. The reliability of the system now becomes that 
of a single module (voter failure rate is considered 
negligible) to the general case of TMR. This is called 
N-Modular Redundancy (NMR) and is an M-of-N 
cluster with N being odd and M = [N/2]: 

 

�>?@A
FGH ��� = �1 − IFGH� � B


� C
��> ��  
D1 − ����E
��                                                     (11) 
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Fig. 13: A Triple Modular Redundant (TMR) structure

 

 
Fig. 14: Comparing NMR reliability (N = 3 and 5)
 

 

Fig. 15: Triplicated voters in aprocessor/memoery TMR
 

 

Fig. 16: Dynamic redundancy 
 

A plot of the reliability of a simplex (a single 
module), a triplex (TMR) and an NMR cluster with N = 
5 is shown in Fig. 14. For high values of R(t), the 
greater the redundancy, the higher the system reliability
(Koren   and   Krishna,  2010).  As  R(t) 
advantages of redundancy become less marked. When 
R(t) <0.5, redundancy actually becomes a disadvantage, 
with the simplex being more reliable than either of the 
redundant arrangements. This is also reflected in the 
value of MTTFTMR, which (for R voter (t) = 1 

and ���� = ����) can be calculated by the following 
equation: 

 
��� J>K =
�

BL�4 − 2�M���C
"� = � BL��4�� − 2��4��C"� =∞

!

∞

!
��� �N��#O)                                           
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A Triple Modular Redundant (TMR) structure 

 

reliability (N = 3 and 5) 

 

Triplicated voters in aprocessor/memoery TMR 

 

A plot of the reliability of a simplex (a single 
module), a triplex (TMR) and an NMR cluster with N = 

values of R(t), the 
greater the redundancy, the higher the system reliability 

R(t)  decreases,  the 
advantages of redundancy become less marked. When 
R(t) <0.5, redundancy actually becomes a disadvantage, 

simplex being more reliable than either of the 
redundant arrangements. This is also reflected in the 

, which (for R voter (t) = 1 

) can be calculated by the following 

C
C = P

Q�
R �

� =
                             (12) 

Voting techniques: a voter receives inputs x
from an M-of-N cluster and generates a representative 
output. The simplest voter is one that does a 
comparison of the outputs and checks if a majority of 
the N inputs are identical variations on the N
Redundancy Unit-Level Modular Redundancy, as 
shown in Fig. 15. 
 
Dynamic redundancy: as shown in Fig. 16, the 
reliability is given by: 
 

��STN��F��� = ��HU���D�1 − �
 
where, R(t) is the reliability of each module and R
is the reliability of the detection and reconfiguration 
unit. Failures to the active module occur at rate of λ. 
The probability that a given such failure which cannot 
be recovered from is 1-c. Hence, the rate at which 
unrecoverable failures occur is (1
Krishna, 2010). The probability that no unrecoverable 
failure occurs to the active processor over a duration 
therefore given by e−(1−c)λt and the reliability of the 
reconfiguration unit is given by R
equation is expressed as: 
 

 ��STN��F��� = ��HU��������F�
 
Hybrid redundancy: an NMR system is capable of 
masking permanent and intermittent failures, but as we 
have seen, its reliability drops below that of a single 
module for very long mission times if no repair or 
replacements are conducted. Figure 17 depicts a hybrid 
system consisting of a core of N proces
an NMR and a set of K spares (Koren 
2010). 

The reliability of a hybrid system with a TMR core 
and K spares is: 

 
�VSWH����� = �XG�)H����H)F����
��Y    

 
where, m = K+3 is the total number 

and Rrec(t) are the reliability of the voter and the 

comparison and reconfiguration circuitry, respectively 

(Koren and Krishna, 2010). 

 

Sift-out modular redundancy: As in

modules in the Sift-out Modular Redundancy scheme 

are active and the system is operational as long as there 

are at least two fault-free modules, as shown in Fig. 18.

 

Duplex systems: A duplex system is the simplest 

example of module redundancy. Figure 19 shows an 

example of a duplex system consisting of two 

processors and a comparator. Both processors execute 

the same task and if the comparator finds that their 

outputs are in agreement, the result is assumed to be 

correct.

a voter receives inputs x1, x2, ..., xN 

N cluster and generates a representative 
output. The simplest voter is one that does a bit-by-bit 
comparison of the outputs and checks if a majority of 
the N inputs are identical variations on the N-Modular 

Level Modular Redundancy, as 

as shown in Fig. 16, the 

����E
(�             (13) 

where, R(t) is the reliability of each module and Rdru(t) 
is the reliability of the detection and reconfiguration 
unit. Failures to the active module occur at rate of λ. 

such failure which cannot 
c. Hence, the rate at which 

unrecoverable failures occur is (1-c)λ (Koren and 
, 2010). The probability that no unrecoverable 

failure occurs to the active processor over a duration t is 
and the reliability of the 

reconfiguration unit is given by Rdru(t). Therefore the 

���             (14) 

an NMR system is capable of 
masking permanent and intermittent failures, but as we 
have seen, its reliability drops below that of a single 
module for very long mission times if no repair or 
replacements are conducted. Figure 17 depicts a hybrid 
system consisting of a core of N processors constituting 
an NMR and a set of K spares (Koren and Krishna, 

The reliability of a hybrid system with a TMR core 

� ��1 − Y����D1 −
            (15) 

where, m = K+3 is the total number of modules, Rvoter(t) 

(t) are the reliability of the voter and the 

comparison and reconfiguration circuitry, respectively 

As in a NMR, all N 

out Modular Redundancy scheme 

are active and the system is operational as long as there 

free modules, as shown in Fig. 18. 

A duplex system is the simplest 

dule redundancy. Figure 19 shows an 

example of a duplex system consisting of two 

processors and a comparator. Both processors execute 

the same task and if the comparator finds that their 

outputs are in agreement, the result is assumed to be 
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Fig. 17: Hybrid redundancy 
 

 

Fig. 18: Sift-out structure 

 

 
Fig. 19: Duplex system 

 
Assuming that the two processors are identical, 

each with a reliability R(t), the reliability of the duplex 

system is: 

 

��U#O)Z��� = �FG�#��� [�4��� + 2
\1 − ��

 

where, Rcomp is the reliability of the comparator. 

Assuming that there is a fixed failure rate of λ for each 

processor and an ideal comparator (R

MTTF of the duplex system is: 

 

��� �U#O)Z = �
4� + F

�    

 
The main difference between a duplex and a TMR 

system is that in a duplex, the faulty processor must be 
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Assuming that the two processors are identical, 

each with a reliability R(t), the reliability of the duplex 

2]����
���^ _        (16) 

is the reliability of the comparator. 

Assuming that there is a fixed failure rate of λ for each 

processor and an ideal comparator (Rcomp(t) = 1), the 

           (17) 

The main difference between a duplex and a TMR 
system is that in a duplex, the faulty processor must be 

identified. Next the various ways in which the faulty 
processor can be identified is discussed (Koren 
Krishna, 2010). 
 
Basic measures of fault tolerant: 
mathematical an abstraction that expresses some 
relevant fact of the performance of its object:
 

• Traditional measures: The system can be in one 
of two states: Up or down. For examples
good or burned out and wire: connected or broken. 

• Reliability measures: formal definitions are as 
following: 

o Failure rate: fraction of unit's failing/unit time, 
e.g., 1000 units, 3 failed in 2 h, then the failure rate 
= 3/1000*2 = 1.5*10-3 per hour.

o Mean Time to Failure (MTTF): 
important reliability measure as it is the mean time 
to failure (MTTF) which is the average time to the 
first failure. It can be obtained from the mean of 
the probability density of the time to failure 

 

∫
∞

=
0

)( dtttfMTTF                                                   

 
With a constant hazard rate λt = const:
 

λλθ /1)exp(
0

=∫ −==
∞

dttMTTF

 
Numerical example: The mean time to failure of a 
component characterized by a constant hazard rate is 
MTTF = 50000 h. Calculate the probability of the 
following events: 
 

• The component will survive continuous service for 
one year. 

• The component will fail between the fifth and sixth 
year. 

identified. Next the various ways in which the faulty 
processor can be identified is discussed (Koren and 

Basic measures of fault tolerant: Measures is a 
mathematical an abstraction that expresses some 
relevant fact of the performance of its object: 

system can be in one 
examples, light bulb 

rned out and wire: connected or broken.  

formal definitions are as 

fraction of unit's failing/unit time, 
e.g., 1000 units, 3 failed in 2 h, then the failure rate 

3 per hour. 
Failure (MTTF): MTTF an 

important reliability measure as it is the mean time 
to failure (MTTF) which is the average time to the 
first failure. It can be obtained from the mean of 
the probability density of the time to failure f(t): 

                                                 (18)

 

const: 

                         (19) 

The mean time to failure of a 
component characterized by a constant hazard rate is 

= 50000 h. Calculate the probability of the 

The component will survive continuous service for 

The component will fail between the fifth and sixth 
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• The component will fail within a year given that it 

has survived the end of the fifth year. Compare this 

probability with the probability that the component 

will fail within a year given that is has survived the 

end of the tenth year. 

 

Solution:  

 

• Since MTTF = 50000 h = 5.7 years, the hazard rate 

of the component is λ = 1/5.7 years. Reliability is 

determined from R(t) = exp(-λt) and the probability 

of surviving one year is: 

   

��1� = `�� > �� = ���/P.c ≈ 0.84 

  

• The probability that the component will fail 

between the end of the fifth and end of the sixth 

year can be obtained from the cumulative 

distribution function of the negative exponential 

distribution: 

 

 ��5 R � ≤ 6� =  �6� −  �5� = exp k− P
P.cl −

exp � Q
P.c� ≈ 0.07 

  

• Because of the memory less property of the 

negative exponential distribution, the probability 

that the component will fail within a year, given 

that it has survived the end of the fifth year, is 

equal to the probability that the component will fail 

within a year after having been put in use: 

 

��5 R � ≤ 6� = `�0 R � ≤ 1� 

= 1 − exp �− 1
5.7� ≈ 0.16 

 

Similarly, the probability that the component will 

fail within a year given that it has survived the end of 

the tenth year is obtained from: 

 

��10 R � ≤ 11 > 10� = `�0 R � ≤ 1� = 1 −
exp �− �

P.c� ≈ 0.16  

 

This probability is equal to the probability from the 

previous, because of the memory less property of the 

negative exponential distribution (Todinov, 2005). 

 

Mean Time to Repair (MTTR): MTTR is the 

expected time until repaired. If we have a system of N 

identical components and the ith component requires 

time ti to repair, then MTTR is given by: 

 

∑
=

∗=
N

i
tiN

TTR

1

1
M

               

(20) 

Mean Time Between Failures (MTBF): The mean 
time between failures can be defined in two ways: 
 

• MTBF is the MTTFs in repairable devices. 

• MTBF is the sum of the mean time. of MTTFs of 
the device plus the MTTR (Mean time to 
repair/restore): 

 

n = >JJK
>Jop = >JJp

>JJp(>JJK              (21) 

 
A related measure, called point availability, 

denoted by Ap(t) is the probability that the system is up 
at the particular time instant t. It is possible for a low-
reliability system to have high availability. Consider a 
system that fails on average every hour but comes back 
up after only a second, (MTTF). Such a system has an 
MTBF of just 1 h (60 m*60 s = 3600 s) and, 
consequently, a low reliability however, its availability 
is high and is expressed as, A = MTTF/MTBF = 
3599/3600 = 0.99972. 
 
MTBF and MTTR: An estimation of system 
availability from MTBF and MTTR is given by: 
 

nqrstrusts�v = >Jop
>Jop(>JJK               (22) 

 
If the mean MTBF or MTTF is very large as 

compared to the MTTR, then you will see high 
availability. This simple equation is easily understood 
by considering Fig. 20. MTTR is the time to return a 
system to service and MTBF is the time the system is 
expected to be up or online before it fails (again). This 
means that the system will nominally be online and the 
system is formally defined by [TL9000] as, “A 
collection of hardware and/or software items located at 
one or more physical locations where all of the items 
are required for proper operation. No single item can 
function by itself.” (Bauer and Adams, 2012). 
 
Service availability: Service availability can be 
quantified by using Eq. (23) (basic availability formula) 
as service uptime divided by the sum of service uptime 
and service downtime: 
 

Downtime  Uptime

 Uptime
tyAvailabili

+
=                            (23) 

 
Equation (24) (practical system availability 

formula) calculates the availability based on service 
downtime, as well as the total time the target system (s) 
was expected to be in service(i.e., the minutes during 
the measurement period that systems were expected to 
be online so planned downtime is excluded): 
 

iceTimeTotalInSev

Downtime-iceTimeTotalInSev
tyAvailabili =                 (24) 
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Fig. 20: MTBF and MTTR 
 

 
Fig. 21: Fault tolerance in cloud computing platform

 
where, Total In Service Time is: the sum of minutes per 
month (or other reporting periods) that the systems in 
the population were expected to be operational.
 
Downtime: Is the minutes of service unavailability 
prorated by the percentage of capacity or functionality 
impacted during the outage (Bauer and 
 

RESULTS AND DISCUSSION

 
Cloud computing has quickly become the de facto 

means to deploy large scale systems in a robust and cost 
effective manner. The combination of elasticity and 
scale poses a series of challenges to a number of areas, 
including fault-tolerance. This survey a comprehensive 
review of representative works on fault tolerance in 
cloud computing is presented, in which general readers 
will be provided an overview of the concepts and 
practices of a fault-tolerance computing.
 

CONCLUSION 
 

In this study, we surveyed the use of fault tolerance 
in cloud computing. Cloud computing is position
itself as a new platform for delivering information 
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Fault tolerance in cloud computing platform 

the sum of minutes per 
month (or other reporting periods) that the systems in 
the population were expected to be operational. 

Is the minutes of service unavailability 
prorated by the percentage of capacity or functionality 

and Adams, 2012). 

RESULTS AND DISCUSSION 

Cloud computing has quickly become the de facto 
scale systems in a robust and cost 

effective manner. The combination of elasticity and 
scale poses a series of challenges to a number of areas, 

tolerance. This survey a comprehensive 
review of representative works on fault tolerance in 

d computing is presented, in which general readers 
will be provided an overview of the concepts and 

tolerance computing. 

In this study, we surveyed the use of fault tolerance 
in cloud computing. Cloud computing is positioning 
itself as a new platform for delivering information 

infrastructures and a range of computer applications for 
businesses and individuals as IT services and 
developing  them  in  the  future  works
Fig. 21. Cloud customers can then provision and deploy 
these services in a pay-as-you-go fashion and in a 
convenient way while saving huge capital investment in 
their own IT infrastructures. Clouds are evoking a high 
degree of interest both in developed and emerging 
markets though challenges such as security, reliability 
and availability remains to be fully addressed to 
achieved full fault tolerance services in the cloud 
platform. 
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