# Research Article Effects of Time after Harvest and Rate of Loading on Force Relaxation Behaviour of Local Variety of Grapefruit (*LemunTaba*)

<sup>1</sup>F.A. Dakogol, <sup>2</sup>S.E Obetta and <sup>2</sup>O.J. Ijabo <sup>1</sup>Department of Agricultural and Bio-Environmental Engineering, Federal Polytechnic Nasarawa, Nasarawa State, <sup>2</sup>Department of Agricultural and Environmental Engineering, University of Agriculture, Makurdi, Benue State, Nigeria

**Abstract:** Force relaxation properties of a local variety of grapefruit (*Lemuntaba*) was determined under quasi-static compression loading using Instron UTM at three levels of time after harvest (freshly harvested, 7 days and 14 days after harvest) and three rates of loading (10, 5, 1 mm/s) for freshly harvested and 10 mm/s for one and two weeks after harvest. Fitting the obtained data for freshly harvested, loaded at 10 mm/s to a three-term Maxwell model; the resulted model equation was of  $F(t) = 743.521e^{-t/1.843}+592.817e^{-t/0.007}+474.254e^{-t/0.008}$ ,  $R^2 = 0.97$ . For freshly harvested loaded at 10 mm/s, the force relaxed (decayed) from an initial value of 2435.647 N to 743.521 N; about 69.473% in 1.834 s; Similar phenomenon was observed for other treatments. From the results, it can be deduced that when this cultivar is loaded with about 65% of the total force at rupture, about 69% of the imposed load will be dissipated upon removal of that in about 1.8 s; an evidence of high elasticity.

Keywords: Decay modulus, force, grapefruit (lemuntaba), relaxation, relaxation time

## INTRODUCTION

Stress relaxation of food and biological material is a measure of the rate at which the same material dissipates stress after being subjected to a sudden load. The principle of stress relaxation is widely used in fruits and vegetable industries as well as food industries generally, the knowledge of stress relaxation parameters is used in the design of containers, i.e., the number of stack of fruits and the maximum depth of container to minimize mechanical damage due to dynamic or vibration loading while in transit and in store (Mohsenin, 1986).

Grapefruits (*citrus paradisi*) are a subtropical citrus fruits known for its bitter taste, it could be yelloworange in colour when ripe; the flesh is segmented and is generally acidic. It ranges from 10-15 cm in diameter depending on the cultivar. The primary varieties include: Ruby Red, Pink, Thompson, Marsh and Duncan.

Grapefruit is an excellent source of many nutrients and phytochemicals that contribute to a healthy diet. It forms an essential part of a balanced diet as it is an important source of digestible carbohydrates, minerals and vitamins; particularly vitamins A and C. In addition, it provides roughage (indigestible carbohydrates) which is needed for normal healthy digestion. The juice helps lower cholesterol level in



Plate 1: Hand picking of grapefruits

humans as well as assisting the body's metabolism to burn fats and is an antioxidant; the seed extract has strong anti-microbial properties against fungi and bacteria (www/Grapefruit-Wikipedia, the free encyclopedia).

Grapefruit, just as other fruits is essentially a perishable commodity, it begins to deteriorate as soon as it is harvested and is particularly prone to handling damage at all times. In general, the level of susceptibility of grapefruits to handling damage is greatly underestimated because the effects of mishandling do not appear until sometimes after the damage had occurred.

The physical and mechanical characteristics of grapefruit (*citrus paradisi*) for temperate regions are well documented (William, 1986) but the viscoelastic properties such as force relaxation and creep are rare if not completely absent for local varieties such as

Corresponding Author: F.A. Dakogol, Department of Agricultural and Bio-Environmental Engineering, Federal Polytechnic Nasarawa, Nasarawa State, Nigeria, Tel.: +234706 321 6123

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

*Lemuntaba* (Plate 1) hence the near absence of handling and processing equipment and the huge losses of the variety that is often encountered. Given the growing economic and nutritional importance of this tropical local variety, it is imperative that viscoelastic properties of the variety be determined accurately so that handling, packaging and transportation systems are designed with utmost efficiency to minimize losses.

The objective of this study is to determine the relaxation parameters (force relaxation, decay modulus and relaxation time) of *Lemuntaba* at three levels of loading (10, 5 and 1 mm/s, respectively) and at three levels of time after harvest (freshly harvested, 7 and 14 days).

In stress relaxation, the test specimen is suddenly brought to a given deformation (strain) and the stress required to hold the deformation constant is measured as a function of time (Mohsenin, 1986; Anazodo, 1982; Golacki *et al.*, 2007; Marco *et al.*, 2007; Burubai *et al.*, 2009a, 2009b).

It is worthy to note that the initial deformation of the material must be less than the deformation at failure of the test specimen; however, it should be high enough to impose considerable strain on the specimen. It should be at least 65% of the total deformation at failure (Anazodo, 1982).

The most important viscoelastic parameters which can be obtained from a stress relaxation test are decay stress ( $\sigma_d$ ) or decay modulus ( $E_d$ ), equilibrium stress ( $\sigma_e$ ) or equilibrium modulus ( $E_e$ ) and time of relaxation ( $T_{rel}$ ) (Khazaei and Mann, 2004; Pallottino *et al.*, 2010). Relaxation time is the time at which the stress in a body resembling a simple Maxwell model decays to 1/e of the initial stress (Mohsenin, 1986). It is a measure of the rate at which a material dissipates stress after receiving a sudden force.

**Mathematical models:** In modeling stress relaxation of biological materials, a generalized Maxwell model with two or three elements is often used. Although when using generalized Maxwell model to characterize food and biological materials, most researchers used 'stress' (Pallottino *et al.*, 2010; Anazodo, 1982); however, because the actual contacting surface area of food material continually changes under applied load making it difficult to calculate exactly the 'true stress' values from the beginning of compression to rupture point, 'stress' can be replaced by any other decaying parameter such as force, modulus of elasticity, (Khazaei and Mann, 2004; Gorji *et al.*, 2010); so generalized Maxwell's model for force relaxation can be represented by Eq. (1):

$$F(t) = \sum_{i=1}^{n} Fi \left( e^{-t/T_i} \right)$$
(1)

where,  $T_1, T_2, ..., T_n$  are the relaxation time constants corresponding to various Maxwell model elements,  $F_1$ ,  $F_2$ .  $F_n$  are the decay forces and  $F_{(t)}$  is the instantaneous force.

# MATERIALS AND METHODS

**Materials:** Grapefruits used for this study were obtained from Kaura CitrusFarm in Toto Local Government Area of Nasarawa State, North Central Nigeria. Four trees in plots of trees typical of the variety were selected from which fruits were harvested for the tests.

Some fruits were carefully handpicked from the trees while others were chipped off the tree with a knife leaving a stalk 10-12 cm long and leaves removed (Coppock *et al.*, 1969); this is to maintain some level of physiological freshness for tests concerning freshly harvested. The fruits were kept cooled in a fruit shed by water spray while harvesting was going on; at the end of harvest (between 1.00-2.00 pm), they were packed in cardboard boxes at ambient temperature of 27°C and 78% relative humidity as shown in Plate 2. The bottoms of these boxes were lined with foam to minimize mechanical injuries and sides perforated to reduce temperature and ethylene build up (Tabatabaekoloor, 2012). In addition, the heat of respiration is removed through these perforations.

The fruits were transported the same day to Advanced Materials Laboratory of the Engineering Materials Development Institute (EMDI), KM 4, Ondo Road, Akure, Ondo State, Southwest Nigeria and stored in a cool room maintained at about 5°C and 87% relative humidity immediately upon arrival at about 8.30 pm. Tests for freshly harvested was conducted at 7.30 am the following day (about 11 h after harvest) while other tests were conducted after 7 and 14 days respectively.

### Methods:

**Dimensions:** Dimensions of 100 freshly harvested fruits were determined on three mutually perpendicular axes using a digital vernier caliper reading to 0.01 mm and the results presented in Table 1.

**Preliminary tests:** Because of variations in sizes, the fruits were grouped into two based on geometric mean diameter (nearly the same physical characteristics): For freshly harvested for example, the range of the



Plate 2: Grapefruits to be loaded in to a cushioned perforated Carton



Res. J. App. Sci. Eng. Technol., 11(12): 1424-1429, 2015

Plate 3: Grapefruit placed axially between parallel compression tools of the universal testing machine



Plate 4: Grapefruit loaded to rupture

| Table I: Physical | l prope | rties of | grapefruit |
|-------------------|---------|----------|------------|
| Ma                | ior     | Inter    | Minor      |

|            | Major  | Inter. | Minor  | G.M    |            |
|------------|--------|--------|--------|--------|------------|
|            | Dia.   | Dia    | Dia    | Dia.   | Sphericity |
| Statistics | (cm)   | (cm)   | (cm)   | (cm)   | (φ)        |
| No. Samp.  | 100    | 100    | 100    | 100    | 100        |
| Mean       | 10.382 | 10.068 | 9.363  | 9.924  | 0.957      |
| Std Dev.   | 0.863  | 0.754  | 0.767  | 0.727  | 0.026      |
| Min. Val.  | 8.745  | 8.645  | 7.400  | 8.240  | 0.891      |
| Max. Val.  | 12.475 | 11.670 | 10.730 | 11.119 | 0.995      |

geometric mean diameter of the first and second group were 8.240-9.799 and 9.899-11. 119 cm, respectively. Five fruits from each group were randomly selected, cleaned of any surface moisture, placed centrally (axially) in the Instron Universal Testing Machine (Model 3369, No. K334; 50 kN capacity) under parallel steel flat plate (Plate 3); however, to avoid spillage of citrus juice (which is acidic) on the platform of the machine, it was covered with plastic sheet and loaded to rupture point (Plate 4). For freshly harvested, the samples were loaded at 10, 5 and 1 mm/s respectively while for 7 and 14 days after harvest, the samples were loaded at the rate of 10 mm/s. The mean load at rupture for each group was determined and 65% of this load used.

**Relaxation test:** For each test, 65% of the value of force obtained in the preliminary test was imputed in to the machine and fruits in each group deformed at the set loading rates (10, 5 and 1 mm/s for freshly harvested and 10 mm/s for 7 and 14 days after harvest) (Khazaei and Mann, 2004). The machine automatically stopped when the set value of force is reached, then force decay with time was recorded at time intervals as in Table 2. The duration for each test was 300 sec (Pallottino *et al.*, 2010; Jatuphong *et al.*, 2008), though the duration of the test could be as long as possible since the

| Res. J. | App. | Sci. Eng | . Technol., | 11 | !(1 | 2): | 142 | 24-1 | 1429, | 2013 | 5 |
|---------|------|----------|-------------|----|-----|-----|-----|------|-------|------|---|
|---------|------|----------|-------------|----|-----|-----|-----|------|-------|------|---|

Table 2: Effect of time after harvest and rate of loading on force relaxation (N)

|                                                       | Freshly narvested |          | 1 11 1 0 1 | 0.1111 0 1       |                   |
|-------------------------------------------------------|-------------------|----------|------------|------------------|-------------------|
| Time (see)                                            | 10 mm/s           | 5 mm/s   | 1 mm/s     | 1 Wk after harv. | 2 Wks after harv. |
| $\frac{1 \operatorname{Inte}(\operatorname{see})}{0}$ | 2425 647          | 2422.450 | 2420.087   | 2215.022         | 1026 101          |
| 0                                                     | 2455.047          | 2435.439 | 2430.987   | 2213.035         | 1920.191          |
| 1                                                     | 2426.071          | 2423.891 | 2425.419   | 2207.382         | 1916.600          |
| 2                                                     | 2424.258          | 2422.109 | 2419.037   | 2203.859         | 1915.200          |
| 5                                                     | 2421.762          | 2419.449 | 2410.908   | 2201.378         | 1912.767          |
| 4                                                     | 2419.870          | 2417.559 | 2412.078   | 2199.517         | 1910.938          |
| 5                                                     | 2418.356          | 2416.047 | 2410.566   | 2198.029         | 1909.475          |
| 6                                                     | 2417.095          | 2414.787 | 2409.306   | 2196.789         | 1908.256          |
| 7                                                     | 2416.014          | 2413.707 | 2409.104   | 2195.726         | 1907.211          |
| 8                                                     | 2415.068          | 2412.762 | 2408.716   | 2194.796         | 1906.297          |
| 9                                                     | 2414.227          | 2411.922 | 2408.414   | 2193.969         | 1905.485          |
| 10                                                    | 2413.386          | 2411.166 | 2408.162   | 2193.225         | 1904.754          |
| 12                                                    | 2412.630          | 2410.536 | 2407.946   | 2192.605         | 1904.145          |
| 14                                                    | 2412.000          | 2409.996 | 2407.757   | 2192.074         | 1903.623          |
| 16                                                    | 2411.460          | 2409.524 | 2407.589   | 2191.609         | 1903.166          |
| 18                                                    | 2410.987          | 2409.104 | 2407.438   | 2191.196         | 1902.760          |
| 20                                                    | 2410.567          | 2408.716 | 2407.301   | 2190.824         | 1902.395          |
| 25                                                    | 2410.189          | 2408.414 | 2407.175   | 2190.527         | 1902.103          |
| 30                                                    | 2409.886          | 2408.162 | 2407.067   | 2190.279         | 1901.859          |
| 35                                                    | 2409.583          | 2407.946 | 2406.973   | 2190.067         | 1901.650          |
| 40                                                    | 2409.331          | 2407.757 | 2406.889   | 2189.881         | 1901.467          |
| 45                                                    | 2409.079          | 2407.589 | 2406.813   | 2189.716         | 1901.305          |
| 50                                                    | 2408.863          | 2407.438 | 2406.744   | 2189.567         | 1901.159          |
| 55                                                    | 2408.647          | 2407.301 | 2406.681   | 2189.432         | 1901.026          |
| 60                                                    | 2408.446          | 2407.175 | 2406.623   | 2189.308         | 1900.904          |
| 70                                                    | 2408.246          | 2407.067 | 2406.569   | 2189.202         | 1900.800          |
| 80                                                    | 2408.057          | 2406.973 | 2406.519   | 2189.109         | 1900.709          |
| 90                                                    | 2408.000          | 2406.889 | 2406.472   | 2189.026         | 1900.628          |
| 100                                                   | 2407.832          | 2406.813 | 2406.428   | 2188.952         | 1900.555          |
| 110                                                   | 2407 664          | 2406 744 | 2406 386   | 2188 884         | 1900 485          |
| 120                                                   | 2407 508          | 2406 681 | 2406 346   | 2188 822         | 1900 424          |
| 130                                                   | 2407 357          | 2406 623 | 2406 308   | 2188 765         | 1900 368          |
| 140                                                   | 2407 206          | 2406 569 | 2406 274   | 2188 712         | 1900.316          |
| 150                                                   | 2407 109          | 2406 519 | 2406 187   | 2188 662         | 1900.267          |
| 160                                                   | 2406 961          | 2406 472 | 2406.089   | 2188.616         | 1900.221          |
| 170                                                   | 2406.901          | 2406.472 | 2405.980   | 2188 572         | 1900.178          |
| 180                                                   | 2406.719          | 2406.386 | 2405.780   | 2188 531         | 1900.137          |
| 100                                                   | 2400.719          | 2400.380 | 2405.780   | 2188.551         | 1900.137          |
| 200                                                   | 2400.010          | 2400.340 | 2405.612   | 2100.492         | 1900.099          |
| 200                                                   | 2400.303          | 2400.308 | 2405.601   | 2188.455         | 1900.002          |
| 240                                                   | 2400.370          | 2400.274 | 2405.590   | 2100.421         | 1900.029          |
| 240                                                   | 2400.298          | 2400.243 | 2403.309   | 2100.390         | 1077.777          |
| 200                                                   | 2400.202          | 2400.214 | 2403.38    | 2188.301         | 1699.9/1          |
| 280                                                   | 2406.111          | 2406.187 | 2405.505   | 2188.334         | 1899.945          |
| 300                                                   | 2406.108          | 2406.162 | 2405.501   | 2188.309         | 1899.921          |



Fig. 1: A typical force relaxation curve of fresh grapeloaded at 10 mm/s

theoretical time is infinity (Mohsenin, 1986). Each test was replicated ten times and the mean value of the decay forces for each rate of loading are as presented in Table 2.

The decay force versus time was then plotted. Figure 1 shows a plot of Force versus time of freshly harvested, loaded at 10 mm/s; Fig. 2 are plots of the experimental and predicted values, while Fig. 3 and 4 are Force-Relaxation curves at different rates of loading and times after harvest respectively.

**Coefficients of maxwell model:** There are a number of methods for estimating the Maxwell coefficients (decay stress, modulus, force and relaxation times) some of which include; Successive Residual method (Anazodo, 1982; Mohsenin, 1986), Gussian or Normalized Distribution Method (Mohsenin, 1986; Burubai *et al.*, 2009a) and the use of soft ware computer packages such as: SIGMAPLOT (Khazaei and Mann, 2004); TableCurve<sup>TM</sup>2D v4.0 (Marco *et al.*, 2007; Gorji *et al.*, 2010); X-port<sup>R</sup>-2009 (Pallottino *et al.*,



Fig. 2: Experimental and predicted force relaxation curve for fresh fruit loaded at 10 mm/s



Fig. 3: Force-relaxation curve at different rate of loading for fresh grapefruit



Fig. 4: Force-relaxation curve for different time after harvest

2010) and written computer algorithms (Mohsenin, 1986; Golacki *et al.*, 2007).

As noted by Khazaei and Mann (2004), a threeterm Maxwell model involving six constants are sufficient for many biological materials, thus a threeterm Maxwell model expressed by Eq. (2) was used:

$$F(t) = F_1 e^{-t/T_1} + F_2 e^{-t/T_2} + F_3 e^{-t/T_3}$$
(2)

where,  $F_1$ ,  $F_2$ ,  $F_3$  are decaying forces;  $T_1$ ,  $T_2$ ,  $T_3$  are the relaxation time constants and F(t) is the instantaneous force at any time, t.

The Coefficients  $F_1$ ,  $F_2$ ,  $F_3$ ; and  $T_1$ ,  $T_2$ ,  $T_3$  were obtained by non-linear regression analysis by iteration method using IBM  $\bigcirc$  SPSS  $\circledast$  Statistics, Version 20.0. The following procedures were followed:

- A scatter plot diagram of Force versus Time for each condition was plotted as in Fig. 1
- The curve was segmented into three based on change in shape
- Linear regression analysis of force-time data of each segment was run to obtain intercepts and slopes which act as the starting values for iteration
- Using the Model equation:  $F_1 * e^{-t/X_1} + F_2 * e^{-t/X_2} + F_3 * e^{-t/X_3}$  and fixing constraints;  $F_1$ ,  $F_2$ ,  $F_3 > 0$ ; and  $X_1$ ,  $X_2$ ,  $X_3 < 0$ ; the data was then iterated
- The values of the intercepts,  $F_1$ ,  $F_2$ ,  $F_3$  give the 1<sup>st</sup>,  $2^{nd}$  and  $3^{rd}$  exponential coefficients of the threeterm Maxwell model while the slopes;  $X_1$ ,  $X_2$ ,  $X_3$  equal to  $\frac{-1}{T_1}$ ,  $\frac{-1}{T_2}$ ,  $\frac{-1}{T_3}$  respectively. The values obtained are presented in Table 3

## **RESULTS AND DISCUSSION**

**Force relaxation curve:** The force relaxation curves (Fig. 1 to 4) have asymptotically decaying trend, typical of stress relaxation curves of most viscoelastic agricultural materials (Mohsenin, 1986; Khazaei and Mann, 2004; Pallottino *et al.*, 2010).

**Coefficients of maxwell model for grapefruit:** From Table 3, considering freshly harvested, loaded at 10 mm/s; inserting the coefficients in Eq. (2) yields:

$$F(t) = 743.521e^{-t/1.843} + 592.817e^{-t/0.007} - 474.254e^{-t/0.008}, R^2 = 0.97$$

Table 3, the first terms of the three-term Maxwell mode ( $F_1$ ) made major contributions to the total decay forces. For freshly harvested at 10 mm/s for instance, the force relaxes from an initial value ( $F_o$ ) of 2435.647 N (Table 1) to 743.521 N; about 69.473% in 1.834 s after which it slows down. Khazaei and Mann (2004) observed a similar trend with Sea buckthorn berries (*Hippophaerhamnoides* L.) using three-term Maxwell model where about 80% of the induced force was dissipated at the initial stage though at relatively long period of 370 s.

However, using a dimensionless relaxation modulus (G\*) defined as:

$$G^{*}(t) = Ao + \sum_{i=1}^{n} Ai \left( e^{-t/T_{i}} \right)$$
(3)

where,  $A_o = \frac{F(t)}{F(o)}$ , F(t) = force at time (t), F(o) = initial time.

For Tarrocco orange, Pallottino *et al.* (2010) fitted the mean values to a three-term Maxwell model and obtained initial dimensionless decay parameter of  $0.59\pm0.04$  with initial relaxation time ( $T_{rel}$ ) of 5.1 sec.

| Treatments        | Maxwell coefficients |       |         |       |         |       |  |  |  |
|-------------------|----------------------|-------|---------|-------|---------|-------|--|--|--|
|                   | <br>F1               | T1    | F2      | T2    | F3      | Т3    |  |  |  |
| Fresh (a) 10 mm/s | 743.521              | 1.854 | 592.817 | 0.007 | 474.254 | 0.008 |  |  |  |
| Fresh (a) 5 mm/s  | 730.038              | 1.834 | 584.030 | 0.069 | 467.224 | 0.007 |  |  |  |
| Fresh (a) 1 mm/s  | 729.296              | 1.727 | 583.434 | 0.067 | 466.747 | 0.006 |  |  |  |
| 1 wk (a) 10 mm/s  | 664.510              | 1.606 | 531.608 | 0.059 | 425.286 | 0.007 |  |  |  |
| 2 wk (a) 10 mm/s  | 577.857              | 1.589 | 462.286 | 0.053 | 369.829 | 0.009 |  |  |  |

Table 3: Maxwell three-term coefficients

Although this value is higher than the 1.854 s, this may be due to factors such as variations in cultivar, environmental factors, testing equipment and procedures as well as method of analysis used. For example, Mohsenin (1986) obtained a three-term Maxwell model for wheat dough using successive residual method as:  $\sigma(t) = 372e^{-t/76}+230e^{-t/3.2}+100e^{-t/0.5}$  while Rudra (1987) got  $\sigma(t) = 385.82e^{-t/65.469}+262.29e^{-t/3.4464}+82.21e^{-t/1.4186}$  for the same data but using a curve fitting program (the spline function) of the IMSL package.

However, for two varieties of Apples (*Golab kohanz* and *shafi abadi*), Gorji *et al.* (2010) obtained initial relaxation times of 1.30 and 1.50, respectively.

Relaxation time may be considered as a measure of the rate at which the material dissipates internally imposed stress, thus the shorter the relaxation time the quicker the imposed stress is being dissipated.

#### CONCLUSION

It has been asserted that high relaxation times are associated with viscous materials while low relaxation times are associated with elastic materials (Mohsenin, 1986). Thus from the initial relaxation times of 1.854, 1.834, 1.727 s for freshly harvested loaded at 10, 5, 1 mm/s; 1.605 and 1.589 s for one-and two weeks after harvest respectively, it can be deduced that grapefruit can dissipate internally imposed stress rapidly resulting in less deterioration as a result of imposed load.

#### ACKNOWLEDGMENT

The authors wish to thank in a special way the Management of Engineering Materials Development Institute (EMDI) Akure, Ondo State, Nigeria for the use of their facilities and equipment most especially the Instron Universal Testing Machine. The contributions of members of Staff of the Institute most especially, the Department of Advanced Materials Laboratory are highly appreciated.

## REFERENCES

- Anazodo, U.G.N., 1982. Experimental viscoelastic characterization of corn cob composited under radial compression. Nigerian J. Technol., 6(1): 75-85.
- Burubai, W., I. Amula, G.W. Etekpe, K.J. Alagoa, N. Preye and T. Suoware, 2009a. Influence of

moisture and loading velocity on the force relaxation characteristics of African nutmeg seed. Am. Eurasian J. Agron., 2(1): 13-16.

- Burubai, W., E. Amula, E. Ambah, P. Nimame, G.W. Etekpe and S.P. Daworiye, 2009b. Viscoelastic properties of African nutmeg. Am. Eurasian J. Agron., 2(1): 17-20.
- Coppock, G.E., S.L. Hedden and D.H. Lenker, 1969. Biophysical properties of citrus fruit related to mechanical harvesting. T. ASAE, 12(4): 561-563.
- Golacki, K., A. Stankiewicz and Z. Stropek, 2007. Elasticity and viscosity of carrot root tissue at different rate of deformation. Pol. J. Food Nutr. Sci., 57(2A): 63-66.
- Gorji, A.C., A. Rajabipour and H. Mobil, 2010. An isotropic relaxation and creep properties of apples. Adv. J. Food Sci. Technol., 2(4): 200-205.
- Jatuphong, V., N. Chanisara, K. Tipaporn and P. Adisorn, 2008. Changes in Viscoelastic Properties of Longan during Hot-air drying in Relation to its Indentation. Retrieved form: http://www.oaae.go.th/statistic/export/130ILOD. (Accessed on: July 13, 2011)
- Khazaei, J. and D.D. Mann, 2004. Effects of temperature and loading characteristics on mechanical and stress-relaxation behavior of sea buclethorn berries part 3. Relaxation Behaviour. Agric. Eng. Int. CIGR J. Sci. Res. Dev., Manuscript FP03 014, Vol. 6, December, 2004.
- Marco, C., B. Giulia, M. Monica, G. Roberto, B. Luigi and F.P. Giovanni, 2007. Stress relaxation test for the characterization of the viscoelasticity of pellets. Eur. J. Pharm. Biopharm., 67: 476-484.
- Mohsenin, N.N., 1986. Physical Properties of Plant and Animal Materials. Gordon and Breach, New York.
- Pallottino, F., M. Moresi, S. Giorgi and P. Menesatti, 2010. Orange fruit rheometrical characterization using stress-relaxation tests. Proceeding of the 17th Congress of the International Commission of Agricoltural and Biosystem Engineering (CIGR). Quebéc City, Canada, June 13-17, pp: 256.
- Rudra, R.P., 1987. A curve fitting program to stress relaxation data. Can. Agr. Eng., 29(2): 209-211.
- Tabatabaekoloor, R., 2012. Orange responses to storage conditions and polyethylene wrapped liner. Agric. Eng. Int. CIGR J., 14(2): 127-130.
- William, M.M., 1986. Mechanical and physical properties for postharvest handling of Florida citrus. P. Fl. St. Hortic. Soc., 99: 122-127.