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Abstract: The Advanced Encryption Standard (AES) is the symmetric cryptography standard that can be used to 
protect the electronic data. The natural and malicious injected faults may cause confidential information leakage and 
also reduce its reliability. In this study, we have explained a low complexity fault detection schemes for the AES 
architecture. The proposed work is low-complexity fault detection schemes using composite fields in polynomial 
basis for the AES encryption and decryption. These schemes are independent of the existing S-box and inverse S-
box constructed. Here we have developed a new technique for the fault detection of subbyte and inverse subbyte 
using multiplicative inversion and affine transformation of the S-box and the inverse S-box. These are constructed in 
S-box and the inverse S-box. So this scheme can be used for the S-boxes and the inverse S-boxes in composite fields 
subbyte and inverse subbyte and using ROM. The proposed AES Fault detection scheme is coded in VHDL (Very 
High Speed Integrated Circuits Hardware Description Language), synthesized and simulated using EDA (Electronic 
Design Automation) tool-XilinxISEVirtex FPGA (http://www.xilinx.com/.). Finally the results are compared with 
Conventional ROM based subbyte and inverse subbyte to show the significant improvement in its efficiency in 
terms of path delay, speed and area. 
 
Keywords: Advanced Encryption Standard (AES), composite field, decryption, encryption, fault detection, 

polynomial basis, S-box 

 
INTRODUCTION 

 
The Advanced Encryption Standard (AES) is the 

symmetric key cryptography standard that can encrypt 
and decrypt the electronic data. In encryption, AES 
accepts a plaintext (which is limited to 128 bits) and a 
key for generating the ciphertext. The key can be 
specified to be 128 bits (AES-128). In AES-128, the 
ciphertext is generated after 10 cycles of repetition. For 
encryption, each round, except the final round, consists 
of four transformations which includes Sub Bytes 
(which is implemented by 16 S-boxes), Shift Rows, 
Mix Columns, AddRoundKey. The decryption 
transformations are the reverse of the encryption 
transformations which is utilised to obtain original plain 
text from the cipher text. Among the transformations, 
the nonlinear ones are the S-boxes in the encryption and 
the inverse S-boxes in the decryption. It occupies much 
of the total AES encryption or decryption area.  

There exist many schemes for detecting the faults 
in the AES hardware implementation, see for example 
(Karri et al., 2002; Rijmen, 2000; Satoh et al., 2001; 
Satoh et al., 2008; Mozaffari-Kermani and Reyhani-
Masoleh, 2008). Among them, the schemes presented in 

Karri et al. (2001) and Maistri and Laveugle (2008) are 
independent of the ways the S-box and inverse S-box in 
the hardware implementation. The fault detection 
schemes using memories (ROMs) for the S-box and the 
inverse S-box are there. Further rmore, a fault tolerant 
scheme which is resistant to fault attacks is presented in 
Moratelli et al. (2008).  

Either the parity-based scheme proposed in Bertoni 
et al. (2002) or the duplication approach is 
implemented to protect the combinational logic blocks 
used in the four transformations of the AES. Moreover, 
for storing the expanded key and the state matrix, either 
the Reed-Solomon error correcting code or Hamming 
code is utilized for protecting the memories. Our 
proposed scheme is only applied to the S-box and 
inverse S-box in composite field polynomial basis. 
While, the scheme presented in Bertoni et al. (2003); 
Wolkerstorfer et al., (2002) uses memories. But for 
high performance, using ROMs are not preferable. 
Thus, for high performance AES, the S-box and the 
inverse S-box are implemented using logic gates in 
composite fields (Canright, 2005; Yen and Wu, 2006).  

Thus the schemes suitable for the S-box and the 
inverse S box in composite field implementation are 
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obtained in Kermani and Reyhani-Masoleh (2006) and 
Mozaffari-Kermani and Reyhani-Masoleh (2008). The 
approach in Kermani and Reyhani-Masoleh (2006);  
Karpovsky et al. (2004); Wu and Yen (2006) is based 
on using the parity-based fault detection method for a 
specific S-box in composite field and polynomial basis 
for covering all the single malicious faults. For the 
multiplicative inversion of the S-box, two specific 
composite fields are treated. Though the transformation 
and affine matrices are excluded in this approach. 
Furthermore, in Cohen (2007) Zhang and Parhi (2004, 
2006), the fault detection scheme for the multiplicative 
inversion of a S-box in composite field polynomial 
basis, the systematic method including predicted 
parities have been used. The transformation matrices 
are also advised. Finally, in the parity-based approach 
in Mozaffari-Kermani and Reyhani-Masoleh (2008), 
through exhaustive search among all the fault detection 
S-boxes utilizing five predicted parities using 
polynomial basis, utmost compact one is obtained. The 
main objective of the work is to obtain low complexity 
fault detection schemes using composite field and the 
result is compared with conventional ROM to get 
efficient path delay, speed and area. 
 
AES encryption: In this section, we briefly explain 
about the four transformations used in the AES 
encryption and decryption (National Institute of 
Standards and Technologies, 2001). In the AES-128 
(128-bit key) transformation implementations, the 
irreducible polynomial of P(x) = x

8
+x

4
+x

3
+x+1 is used 

for constructing the binary field GF(2
8
). Each 

transformation in every round acts on its 128-bit input 
denoted as the state. The states are considered as 4×4 
matrices whose entries are 8 bits. For example, the 
input state S with its 8-bit entries, i.e., s r,c, 0≤ r, c≤3, is 
represented as follows: 

 
S = [sr,c]

3
r,c= 0               (1) 

 
Considering (1) as the input state of an encryption 

round. The transformations in each round, except the 
final round, are as follows:  
 
SubBytes: In each round the first transformation is the 
bytes substitution (SubBytes) which is implemented by 
16 S-boxes. Let the 8-bit input and output of each S-
box besr,c€GF(2

8
) and s'r,c € GF(2

8
) respectively. The S-

box consists of a multiplicative inversion, i.e., s
-1

r, c € 
GF(2

8
), followed by an affine transformation consisting 

of the matrix Г and the vector γ to generate the output 
as: 
 

            (2) 

The 8-bit outputs of 16 S-boxes are used to obtain 

the output state of the SubBytes transformation as:  

 

s' = [s'r,c]r,c = 0                 (3) 
 
Shift rows: In the second transformation, it cyclically 
shifts the 4 bytes of the rows of the input state to the 
left and the first row is left unchanged to obtain the 
output state, i.e., SR(S'), as: 
 

               (4) 
 
Mix columns: In the third transformation, multiplying 
a constant matrix with the output state of ShiftRows, 
SR(S') in (4), to obtain the output state of MixColumns, 
i.e., the matrix S″, as: 
 

               (5) 
 

                  (6) 
 
AddRoundKey: The final transformation is 
AddRoundKey in which the input state is added 
(modulo-2) with the key of the round. Considering the 
round key input state as the matrix K = [kr, c]3r,c = 0, 
with entries kr; c, 0≤r, c≤3, the output state of the 
AddRoundKey transformation, i.e., O, is obtained as: 
 

O = [or,c]
3

r;c= 0= S″+K                    (7) 
 

         (8) 
 

FAULT DETECTION SCHEME 

 

The systematic fault detection scheme for the 

multiplicative inversion of s-box and inverse s-box: 
This scheme explains the 8-bit input of the 
multiplicative inversion is multiplied by the 8-bit 
output. Also the n-bit result (1≤n≤8) of the 
multiplication is compared with the actually obtained n-
bit result, i.e., 1 € GF (2

8
). If s≠0 and 0 € GF (2

8
). If s = 

0 because the multiplicative inversion is also used in 
the inverse S-box, the same scheme can be used for the 
inverse S-box. 
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Fig. 1: The scheme based on multiplication for the fault 

detection of the multiplicative inversion 

 

We present a systematic method for the fault 
detection scheme for the multiplicative inversion by 
deriving the matrix-based formulations for the 
multiplicative inversion in the S-box and inverses-box. 
We use the following theorem from Mentens et al. 
(2005) to obtain the multiplication of field elements 

A=� ��αi���
�	
    and   B=� ��α����

�	
    in   the  finite  field 
GF(2

m
) constructed by the irreducible polynomial of 

P(x) with the primitive root of αi. 
Let s = s7α

7
+s6α

6
+s5α

5
+s4α

4
+s3α

3
+s2α

2
+s1α+s0 a n d 

s
-1

 = s7
-1

 α
7
+s6

-1
 α

6
+s5

-1
 α

5
+s4

-1
 α

4
+s3

-1
 α

3
+s2

-1
 α

2
+s1

-1
 α

1
 

+s0
-1

 be the 8-bit input and output of the multiplicative 
inversion in the binary field GF(2

8
), respectively. 

Considering the fact that the result of the multiplication 
of the 8-bit input s, s ≠ 0 and the output s

-1
 of the 

multiplicative inversion is the unity polynomial 1 € 
GF(2

8
), the following is derived from Theorem 1 for 

the relation between s and s
-1

. 
 
Corollary 1: Let the vectors corresponding to the input 
and output of the multiplicative inversion be s = [s0, s1, 
s2, s3, s4, s5, s6, s7]

T
 and s

-1
 = [s7

-1
,s6

-1
, s5

-1
, s4

-1
,, s3

-1
, s2

-1
, 

s1
-1

, s0
-1

]
T
. Then, the matrix formulation of the S-box 

multiplicative inversion (respectively, the inverse S-
box) is as follows in Fig. 1. 
 
Theorem 1 (Mentens et al., 2005): Let C = 
� ciαi��
�	
 be the multiplication of A and B € GF(2

m
). 

Then, the coordinates of C can be obtained from: 
  

[c0, c1, c2....cm-1] = (L+Q
T
U)b               (9) 

 
where, b = [b0, b1, b2.....bm-1]

T 

 

             (10) 

       (11) 
 

And the (m-1xm) binary matrix Q is obtained as 

follows: 

 

[αm αm+1 ...... α12m-2]T = Q [1, α, α2...... αm-1]
T 

mod(p(x))                 (12) 

 

ZS
-1

 = u                              (13) 

 

u = [u' 0 0 0 0 0 0 0] where u' is obtained by logical OR 

operations of all inputs and outputs, u' = 

(s0˅s1˅s2˅s3˅s4˅s5˅s6˅s7) ˅( s7
-1

 ˅s6
-1

 ˅ s5
-1

 ˅ s4
-1

 ˅ s3
-1

 

˅ s2
-1

 ˅ s1
-1

 ˅ s0
-1

) Moreover, the modulo-2 additions 

(XOR operations) of the coordinates of s are shown 

with commas in indices, e.g., s7,0 = s7 + s0: 

 

(14) 

 

Proof: We prove (13) for two cases of s = 0 and s ≠ 0 

separately. Let the input (s ≠ 0) be a nonzero field 

element in GF(2
8
) generated by P(x) = x

8
+x

4
+x

3
+x+1. 

Then, the multiplicative inversion should generate s-1. 

Using (12) in Theorem 1 and considering the 

irreducible polynomial of P(x), the (7×8) matrix Q can 

be obtained as: 

 

             (15) 

 

This matrix is obtained by using the representations 

of α
8 

α
9.
..... α

14 
with respect to the polynomial basis for 

different rows of Q. Considering A= s ≠ 0 and B = s
-1

 in 

Theorem 1, the matrices L and U in (10) and (11) are 

functions of the 8-bit input vector s as: 
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             (16) 

 

             (17) 

 

Substituting Q, L and U (15)-(17) from (9) and 

denoting Z = L + Q
T
U. Since s ≠ (0 0, 0, 0... 0) € 

GF(2
8
), u = 1 and the result of multiplication is: 

 

C = A.B mod P(x) = 1 € GF(2
8
) 

i.e., c = [c0, c1,. c7]
T
 = [ 1 0... 0]

T
  

 

Therefore using (9) one can prove that (13) is valid 

for s ≠ 0. moreover, for s = 0, the output of the 

multiplicative inversion generates 0 = (0 0.... 0). Thus, 

all entries of the matrix Z and hence, all eight entries of 

the left-hand side vector of (13) are equal to zero. In 

such a case, the vector u = [0 0... 0]
T
 since the result of 

the OR operation among all sis and s
-1 

i s are zero, i.e., 

u =0. Therefore, the proof is complete. 

One can figure out that implementation (13) needs 

64 ANDs, 15 ORs and 143 XOR gates. Also it is noted 

that XOR gates can be reduced to 84, if sub expression 

sharing is used. If one implements the S-box using the 

composite field presented in Breveglieri et al. (2007), it 

requires 36 and gates and 123 XOR gates for the 

original S-box implementation. Then, adding this fault 

detection scheme would require approximately 91% 

area overhead. Also the silicon area of an AND is 0.6 

that of an XOR gate and is derived assuming that an 

XOR gate is implemented by 10 transistors. 

 

The proposed fault detection scheme for the S-Box 

and the inverse S-Box: If the SubBytes 

implementation in the AES is using LUTs, there will be 

no means of entry to the output of the multiplicative 

inversion. Thus, the aforementioned scheme cannot be 

used. We propose a new scheme which is independent 

of the way the implementation of S-box and the inverse 

S-box. First, we obtain the matrix-based S-box 

formulations as follows: 

 

Theorm 2: Let s =s7α
7
+s6α

6
+s5α

5
 + s4α

4
+s3α

3
+s2α

2
 + 

s1α+ s0 a n d s' = s'7α
7
+s'6α

6
+s'5α

5
+s'4α

4
+s'3α

3
+s'2α

2
+ 

s'1α
1
+ s'0 be the 8-bit input and output of the S-box. 

Thus the relation between the input and output of the S-

box can be obtained as: 

 

Ms' + m = u'               (18) 

 

Moreover, the (8×8) matrix M is denoted as: 

 

  
                                                                                   (19) 

where, u' = [u',0,0,0,0,0,0,0]T u' = (s0˅s1˅s2˅s3 

˅s4˅s5˅s6˅s7) ˅(s'7˅s͞'6˅s͞'5˅s'4˅s'3˅s'2˅s͞'1˅s'͞0) and m 

= [s6;0, s7;6;1, s7;2;0, s6;3;1, s7;6;4;2, s7;5;3, s6;4, s7;5]
T
.  

 

Proof: We prove (18) for two cases of s ≠ 0 and s = 0 

separately. Let 8-bit input s be a nonzero field element 

in GF(2
8
). Considering (2), one can obtain: 

 

             (20) 

 

By substituting s-1 from (20) into (13), one reaches 

ZГ
-1

 s'+ZГ
-1

γ. Now, let us denote ZГ
-1

 = M and ZГ
-1

 γ = 

m. Then, the left-hand side of (18) is obtained. Since s 

≠0 = (0, 0... 0) € GF(2
8
) u' = 1. i.e., the result of 

multiplication C = AB mod P(x) = 1 € GF(2
8
). This 

implies that the left-hand side of (18) be Zs
-1

 = [1 0... 0] 

T = u'. Furthermore, because we have Zs
-1

 = Ms'+ m 

one can prove that (18) is valid for s≠0. Moreover, 

according to (2), for the input s = 0 = (0, 0... 0) € 

GF(2
8
). 

We have the output as s' = [s'0 s'1... s'7]
T
 = [1 1 0 0 0 

1 1 0]
T
 which corresponds to the field element s' = {63} 

h = (0 1 1 0 0 0 1 1) € GF(2
8
). From  the Theorm 2, u' = 

[0 0... 0]
T
 since we have u' = (s0˅s1˅s2˅s3˅s4˅s5˅s6˅s7) 

˅( s'7 ˅s͞'6 ˅ s͞'5˅ s'4 ˅s'3 ˅s'2˅s͞'1˅s'͞0). Then the vector [0 

0... 0]
T
 = u'. Therefore, the proof is complete (Fig. 2). 

Let us consider (18) for the input s = 0 = [0 0... 0] 2 

€ GF(2
8
). For this input, the correct output is s' = 

{63}h= (01 1 0 0 0 1 1) € GF(2
8
). If the erroneous
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Fig. 2: The proposed fault detection scheme of the S-box 

 

output is not s' = {63}h = (0 1 1 0 0 0 1 1) € GF(2
8
) in 

the right hand side of (18), we have u' = 1, whereas the 

left-hand side is zero and therefore, the wrong output is 

detected. 

Although checking the formulation of (18) detects 

all errors in the output of the S-box, its implementation 

is very costly (Proposition 1). To reduce the overhead 

of the fault detection scheme (Fig. 2), we have obtained 

the  single-bit  parity  for  the formulation of (18). In 

Fig. 2, this is obtained in order to compare only 1 bit for 

an 8-bit data to detect any combination of odd number 

of erroneous bits at the result of the left-hand side of 

(18). Thus, one can check the parity of two sides of (18) 

to obtain 1-bit equation for checking the S-box as 

follows: 

 

Theorem 2: Let s =s7α+s6α
6
+s5α

5
+s4α

4
+s3α

3
+s2α

2
+ 

s1α+s0 and s' = s'7α
7
+s'6α

6
+s'5α

5
+s'4α

4
+s'3α

3
+s'2α

2
+ 

s'1α
1
+s'0 be the 8-bit input and output of the S-box. The 

equation holds for all the possible patterns of s and s' is 

as follows: 

 

P (M s'+m) = s0(s'b+s'c)+s1s'b+s2s'd+s3s'4+s4(s'c 

+s'3)+s5s'a+s6(s'd+s͞͞'6)+s7(s'5+s'4) = u'  

 

where  

 

s'a = s'0+s'2+s'3+s'5., s'b = s'a+s'7, s'c = s'+s'4+s'6  

and s'd = s'2+s'7                                          (21) 

 

Proof: The parity of two sides of (18) as obtained and 

we have: 

 

P(M s'+m) = Pu' = u'                (22) 

 

where, M, m and u' are presented in Theorem 2. 
Considering the fact that parity is a linear operation, 

P(M s'+m) = PM s'+P m. Then, using M and m defined 
in Theorem 2 one can obtain: 
 

PM s' = sas'0+sbs'1+scs'2+s'3 (sa+s4) +s'4 (sb+s3+s7)+ 
s'5(sa+ s7)+s'6 (sb+ s6)+s'7 ( s5+sc) 
 
And Pm = s6+s7, where sa= s0+s1+s5, sb = s0+s4, sc= 

sa+ s2+ s6, after rearranging, the proof is complete. 
 
Corollary 2: For the fault detection of the inverse S-
box, one can use by changing the place of the input and 
output, i.e., swapping the coordinates of s with s'. 
 

SIMULATION RESULTS 
 

Here we have considered both the single and 
multiple stuck-at errors for the proposed scheme. And 
these models covers both natural faults and fault 
attacks. In the AES encryption or decryption rounds, if 
exactly 1 bit error appears at the output, this proposed 
scheme detects it, the error coverage is about 100%. 
Because in this case, one of the 8-bit four error 
indication flags in alarms the error. However, multiple 
stuck-at errors are also considered. Because multiple 
bits will actually be flipped due to the reason an 
attacker cannot be able to flip exactly 1 bit in a single 
stuck at error to gain more information by some 
technical constraints. 

The AES algorithm and low complexity fault 
detection scheme for composite s-box was described in 
VHDL and we used the Modelsim 6.3 g_b1 tool to 
simulate the code. We analyzed the area and internal 
and external fault in AES. The fault detection schemes 
of sub byte in existing and proposed compare the 
performance in Table 1. Figure 3 to 6 shows the 
simulation results. 

The implementation of s-box requires large number 
of gates in traditional (LUT) Look up table. Also the 
unbreakable delay is longer than that of the total delay. 
Also it is not suitable for resource constrained use 
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Table 1: Comparision of s-box 

Design Area Delay Power 

LUT-Based 262144 31.824 ns 35 mw 

Composite field based 28514 8.129 ns 34 mw 

 

 
 

Fig. 3: Output of encryption for composite field s-box without error 

 

 
 

Fig. 4: Output of encryption for composite field s-box with error 

 

 
 

Fig. 5: Output of decryption for composite field s-box without error 
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Fig. 6: Output of decryption for composite field s-box with error 

 

because it costs a large area. Thus the composite field 

arithmetic is used to solve these problems. The fault 

detection scheme implemented by (LUT) look up table 

in VHDL code synthesised using Xilinix 9.1ISE and get 

the report of gate count. The gate count value of LUT 

based fault detection scheme is 262144 logic gates. 

This fault detection scheme requires 4 times greater 

than the proposed one. We have to compare it with 

proposed once and our aim is to reduce the gate count 

to maximum possible extent.  

Composite field implementation of s-box needs 

less number of gates. We can describe in VHDL and 

perform synthesis using Xilinix 9.1 In our synthesis 

report we got a comparatively small value of value of 

28514 numbers of gates. Our aim is to reduce the gate 

count to maximum possible extent. We got gate count 

almost one tenth of look up table implementation of s 

box. 

 

Encryption output for composite field s-box without 

error: 

 

Plain text: x“00112233445566778899aabbccd 

deeff” 

Key: x“000102030405060708090a0b0c0d0e0f” 

Cipher text: x“69c4e0d86a7b0430d8cdb78070b 

4c55” 

 

Figure 3 shows the output for composite field s-

box without error any for a particular input. Theta, eta, 

gamma, sigma values are obtained and the fault output 

value is zero. 

 

Encryption output for composite field s-box without 

error: Figure 4 shows the Output for encryption for 

composite field s-box without error for a particular 128-

bits input and128-bit input key. Fault detection scheme 

implemented by composite field s-box and detect a 

internal fault. We will consider the initial round pre_out 

output value and replace output of pre_out with another 

128-bit value and stimulate with modelsim we will get 

faulty output Theta, eta, gamma, sigma values are 

obtained and the fault output value is obtained. In this 

waveform fault occur in add roundkey transformation 

in initial round. 

 

Decryption output for composite field s-box without 

error (Fig. 5): 

Decryption output for composite field s-box with 

error: Figure 6 shows the Output of decryption for 

composite field s-box with error any for a particular 

128-bits cipher input and 128-bit input cipher key of 

each round. Fault detection scheme implemented by 

composite field s-box and detect a internal fault. We 

will consider the internal inverse round key output 

value and replace output of inverse add round key with 

another 128-bit value and stimulate with modelsim we 

will get faulty output Theta, eta, gamma, sigma values 

are obtained and the fault output value is obtained. In 

this wave form fault occur in add round key 

transformation of initial round. 

 

CONCLUSION 

 

We have presented a high performance low 

complexity parity based fault detection scheme for the 

AES. These schemes are constructed using the S-box 

and the inverse S-box using composite fields. We have 

obtained the least complexity S-boxes and inverse S-

boxes including their fault detection circuits. The new 

fault detection schemes are independent of the 

structures of the S-boxes and the inverse S-boxes. So 

that we have used parity based method in s box. 

Therefore it improves the fault coverage to a greater 

extent because here the error detection at s box takes 

two times of it. This simulation results shows that the 

proposed structure-independent schemes have the 

highest efficiencies with acceptable error coverage. It 
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shows reasonable area also the time complexity 

overheads.  
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