
Research Journal of Applied Sciences, Engineering and Technology 12(3): 347-354, 2016

DOI: 10.19026/rjaset.12.2342

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2016 Maxwell Scientific Publication Corp.

Submitted: August 24, 2015 Accepted: September 14, 2015 Published: February 05, 2016

Corresponding Author: Sandhia Valsala, Karpagam University, Coimbatore, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

347

Research Article
Requirement Prioritization and Scheduling in Software Release Planning Using Hybrid

Enriched Genetic Revamped Integer Linear Programming Model

1
Sandhia Valsala and

2
Dr. Anil R. Nair

1
Karpagam University, Coimbatore,

2
Scientist Department, Bangalore, India

Abstract: The main objective of this study is to scheduling the prioritized requirements that make the software
release in a better way. Software release is a single or a group of change in an already evolved software product that
can result in another new product. Therefore, a good planning is essential and a bad plan can always lead to
irrelevant features (requirements) being included in the release which in turn can affect the release time of the
software. In order to overcome this delay, two things have to be considered such as requirements prioritization and
scheduling. Prioritization of requirements means that the significant requirements are released in priority. Second is
to schedule these prioritized requirements so as to release the new version on time. If we just do requirement
prioritization without making an appropriate time plan, there is a high chance that the project may exceed the release
schedule and this probability will grow as the number of dependencies increases. So we have to perform
requirement prioritization and scheduling as one model that can minimize the project duration. So the paper
consolidates both the processes of software release, prioritization and scheduling, called as Hybrid EGRILP model
in order to maximize the revenue and to minimize the project duration. The requirements prioritization is performed
using the Enriched Genetic process where the premature convergence problem is overcome and the Revamped
Integer Linear Programming (RILP) is introduced with the enriched genetic process. This combination of methods
maximizes the profit of the software and minimizes the release time of the software.

Keywords: Modified genetic algorithm, modified heuristic Integer Linear Programming (ILP) model, premature

convergence problem, requirements prioritization, requirements scheduling, software release planning

INTRODUCTION

A software release is a collection of new or

changed features that can be included in an updated or
new version of a software product. At the time of
software release planning, the features to be involved in
a software release are stable in a way that the budget,
technical, risks and resource constraints are met
(Rahman and Rokonuzzaman, 2014). Software
development is defined as a sequence of actions where
the requirements of the users are converted into the
final software product. These activities includes
converting the user requirements into a model
(prototype), progressing the model into real time
development (software) and sometimes also includes
the maintenance of the delivered software product.

The software release planning has two steps,
requirement management and software planning. In
requirement management process, the requirements are
modified; new requirements are additionally added
while software planning phase deals with the way of
reaching the goal, processing the risk factors, satisfying
the constraints, delivering the final product that
promises customer and user satisfaction (Meenakahi,

2014). The requirement selection process should be
completed before adding the requirements to the
software product. Each considered requirement will not
have the same priority and a decision to select the most
appropriate requirement is the most vital task of
software requirement prioritization.

The next significant process in software
development is scheduling these prioritized
requirements. Since the selected requirements are
having dependencies with each other, scheduling these
requirements may have a restriction with time
constrained metric (Sandhia and Anil, 2014). Therefore,
it is essential to arrange (order) the optimal
requirements for the reason of determining the
requirements that have to be included in the next
version of software release and also it is essential to
determine an appropriate time plan to release the
software.

An appropriate Software Release Planning includes
both requirement prioritization and scheduling. Most of
the existing release planning models focuses only on
requirement prioritization but our proposed model takes
into consideration both these aspects (i.e.,) requirement
prioritization and scheduling. Prioritization of

Res. J. Appl. Sci. Eng. Technol., 12(3): 347-354, 2016

348

requirements means ordering the significant
requirements according to their priority value.
Scheduling these prioritized requirements means
developing a project plan so that the new version of the
software products released on time. If we just do
requirement prioritization without making an
appropriate time plan, there is a high chance that the
project may exceed the release schedule and this
probability will grow as the number of dependencies
increases.

Thus, in this study consolidates requirements

prioritizing and scheduling in a software release so as to

maximize the revenue and minimize the project span.

The requirements prioritization is performed using the

Enriched Genetic Algorithm (EGA) where the

premature convergence problem is overcome and the an

heuristic Revamped Integer Linear Programming

(RILP) model is introduced for the purpose of

scheduling these prioritized requirements that makes

the software release in a better way.

LITERATURE REVIEW

In Chen et al. (2010) introduces two integer linear

programing models that integrate time scheduling to

software release planning. First model proposes two

separates ILP’s, one ILP to perform requirement

prioritization and another ILP to perform requirement

scheduling so as to minimize the project duration. The

second model integrates scheduling into requirement

selection process (Li et al., 2007). This model not only

maximizes the revenue, but also promises an on time

project schedule and project delivery. Additionally, the

author presents Scrum Methodology that can simplify

the dynamic adaptation for under or overestimation of

processing time or revenues. The simulation results

show that the requirement dependency is closely linked

with requirement selection and scheduling process.
The requirement engineering process involves

requirement prioritization as a major step. It also helps
to make essential decisions about requirements
selection. The requirement prioritization process aims
to define those candidate requirements involved in
software development process that should be included
in a certain release. For this purpose various methods
are utilized. These methods use various approaches and
also considers various factors for prioritization like
benefit, value, risk, cost, etc., Thus, in Iqbal et al.
(2009) author describes an evaluation technique utilized
for requirement prioritization.

In Arup et al. (2011) proposes an approach for test

case prioritization utilizing a simple mathematical

prioritization method. This method has identified a

number of generic parameters under database, GUI,

Networking and has taken into consideration a number

of projects under these domains. From these it uses

experts view to classify the level of user requirements

regarding the parameters. At the first instance, on a six

scale basis, the information for all the tables is joined to

create a Project Specific Base Table (PSNT). Whenever

a new project comes under the same category, the

corresponding priority levels are assigned.

Software release planning, requirements catalogues

are often not homogeneous and complete. Current

release planning method, assume such details of

commitments and thus, in Samuel and Susanne (2012),

the author proposes a method on how to perform

software release planning efficiently. At the same time

reducing the release planning time and increasing the

decision making flexibility is also analyzed. The

selected features like REQUIRES and OR relationship

between requirements are captured. The selected

requirements structure can be utilized to support

abstraction and to hide incompleteness. Additionally,

this study describes the methods of decision-making,

trust with an industrial case and effort.

Software release Management is a significant vital

technology for the distributing the product or project to

the customer. The success factor of a software product

is based on how gracefully the project is released to the

customer. The process of planning, testing, building,

deploying software and hardware, storage of software

and version control are all coming under release

management process. There are a number of methods to

estimate release planning and software development.

But there are no such methods that gather all the

capabilities and resources in one shot. Thus, in Prabhat

and Ashish (2012) proposes an intelligent scheduling

method to estimate the software release by feeding as

inputs the starting requirement, capabilities of the

resources and availability. These data are considered as

the training set. Finally, the requirements are analyzed

for the process of decision making.

Each requirement is having its own importance

based on its priority and this priority changes over time

and over projects. So the arranging the requirements in

order (i.e.,) requirements prioritization is an important

task of software release. The result of prioritization is to

implement these selected requirements. Many methods

are there to do this prioritization with their own

advantages and disadvantages. The author suggests a

clear cut method to solve this prioritization process and

examines various methods used previously. From this

investigation, a new prioritization framework is

introduced which overcomes the drawback of the

existing methods.

MATERIALS AND METHODS

Hybrid enriched genetic revamped integer linear

programming model:

The Enriched Genetic Algorithm (EGA): In software

release process, the software requirements have to be

prioritized initially and then the prioritized

requirements are scheduled in order to make the

Res. J. Appl. Sci. Eng. Technol., 12(3): 347-354, 2016

349

Fig. 1: Proposed software release planning framework

software release process successful. So at first, the
Enriched Genetic Algorithm (EGA) is proposed in
order to prioritize the requirements and some additional
parameters are considered for the purpose of making
the prioritization process more efficient in terms of
computation, robustness and reliability. The proposed
framework is shown in Fig. 1.

Initially the stakeholders are involved in a
discussion session and they gather “m” number of
requirements that are needed to be developed for a
software product. Mostly these requirements are
interdependent with each other and some requirements
themselves are singular without any dependencies.
Some requirements will have dependencies over other
requirements (Aasem et al., 2010). Henceinorder to do
prioritization of these requirements, dependencies are
fixed between them based on six dependency factors
(Ma and Krings, 2008). The dependency factors are
combination, exclusion, implication, cost-based,
revenue based and the time based dependencies.

When any two requirements are dependent on each
other and one cannot be implemented without another,
then the dependency is named as combination
dependency. Taken two requirements in which software

development process requires neither of them or either
of them or do not require bot, this dependency is termed
as exclusion. The implication dependency needs a
requirement that support another requirement to
function (Shinto and Sushama, 2013), but, not in vice
versa. It gives importance to the logical connection
between the requirements more than the precedence
relation. Next is cost based and revenue based
dependencies. When the cost and revenue of a
requirement affects another requirement, then these
dependencies exists.

Due to the time constraint (time dependency), it is
very difficult to process all the requirements at the time
of the prioritization process. Hence, while considering
the prioritization (i.e., requirement selection), In this
proposed work the process requirements are changed
based on the time dependency rather than the constraint
based. The constraints played an important role in
finding both the relative cost-benefit trade-offs among
techniques and cost effectiveness of prioritization
techniques. As the project size is very huge means, the
processing system consumes huge amount of time. This
issue of software systems can propose by utilizing a
good requirement prioritization technique. A

Res. J. Appl. Sci. Eng. Technol., 12(3): 347-354, 2016

350

Table 1: Matrix formation to calculate the requirement quality value and stake holders priority

Requirements set based

on dependencies Req set 1 Req set 2 … Req set k

Req set 1 � ��� ��� 1 � ��� ��� 1	
� ��� ��� 2 � ��� ��� 1	

… � ��� ��� � � ��� ��� 1	

Req set 2 � ��� ��� 1 � ��� ��� 2	
� ��� ��� 2 � ��� ��� 2	

… � ��� ��� � � ��� ��� 2	

⋮ ⋮ ⋮ ⋮ ⋮
Req set k � ��� ��� 1 � ��� ��� �	

� ��� ��� 2 � ��� ��� �	
… � ��� ��� � � ��� ��� �	

requirement prioritization technique schedules the
execution with the EGA Aging factor, thus the higher
priority processed before lower priority.

The fitness value for each requirement subsets is

calculated by using the following process.

Fitness value calculation: Since the fitness value

calculation is based on the stake holders priority level

and the requirements quality value, both the measures

are calculated by a matrix where the rows and the

columns are
����
������ �
����
������. The

input of the stake holder’s priority level matrix is stake

holder’s priority and the input to the requirements

quality value is requirement quality category. The

matrix formulation for the “k” number of requirements

subset is shown in the Table 1.

The computation of effect of a grouped

requirement subset is as:

 ������ = � ������
 ∗ ����ℎ� ��� (1)

where, the requirement’s effects are calculated by

multiplying the weight of the requirements and the

compeer value of the requirements.

The compeer value is resoluted by comparing the

grouped requirement subset with original requirement

set. If they both are matched, then the compeer value

defined as “1”, else it is defined as “0”.

Then the delta value is computed by taking the

modulo of difference between the effect and the

stakeholders priority value and is given as:

 ∆ =
"������ − � ��$��ℎ�%&�
� �
��
��' %�(�%)$��& �� �ℎ�
����
����� ��
 $
����
����� ��)��� "
 (2)

The requirement quality is characterized as rating

and the penalty value computed as follows:

���$%��' = ∆∗� *+,�-.
 // (3)

Since the summation of the penalty and the fitness

value of a requirement subset equals “1”, the fitness

value can be written as:

 ������� = 1 − ���$%�' (4)

This method of removing the requirements may
lead to a situation where the selected number of
requirements will be higher than the number of
requirements in the starting stage. If this issue occurs,
then from the list of chosen requirements subsets the
one with less fitness will be discarded. Therefore, the
computational efficiency is enhanced and the
computational complexity is minimized.

EM Algorithm: Since the requirements specified by
the stakeholders may be huge in number, it is necessary
to determine an efficient way to reduce the number of
requirements subsets. Thus, the Expectation-
Maximization (EM) algorithm is used for this purpose.
The different stakeholders present their requirements in
different ways and some of the requirements may have
similar outcomes. This process reduces the number of
requirements in an efficient way and supports the
proposed Enriched Genetic Algorithm (EGA) to be
performed with reduced number of requirements subset.

The threshold value is fixed through which all the
requirements subsets from the EM algorithm compares
their fitness value with the threshold value is as
follows:
 �ℎ
��ℎ�%& ($%�� = ������� $(�
$��(1 −������� $(�
$��) (5)

The threshold value using the fitness value is
found. Then the each requirement subset compares its
fitness value with the threshold value; remove the
lowest fitness value requirements subset and preserve
the highest fitness value requirements subset for the
next process. The higher fitness value requirements
subset is reproducing the next generation process.
Initially, the crossover operation is performed so as to
mate two requirements subset to generate the new
requirement subset. Then the mutation process attempts
to enhance the requirement subset with dynamic
selectiveness that produces the efficient requirement
subset.

Aging factor: During the genetic process of crossover
and mutation, the searching process of requirements
restricts the system to local minima. The process
catches initially grouped requirement subsets in its
memory compares the newly generated requirement
subset with the memory. If both are matched, then the
requirement subset age is set as 1 else 0. It is described
as:

Res. J. Appl. Sci. Eng. Technol., 12(3): 347-354, 2016

351

2�
����
����� ��)���(�)=
����
����� ��)��(�) �� ����
' �ℎ��
����
����� ��)��� $�� = 0 �%��
����
����� ��)��� $�� = 1

The process of calculating the fitness value
continuous until the number of requirements becomes
eight which are optimized requirement set and
prioritized according to their fitness value. (i.e.,) after
the aging factor concept, the requirement subset reveals
its requirements and checks the number of requirements
if it is equal to eight. If not, the requirements are again
taken to the grouping requirement process to get the
optimal eight requirements.

Revamped Integer Linear Programming (RILP):
The requirement prioritization is the most fundamental
process of software release planning where the
incoming requirements of a specific software are
optimized and processed to fulfill all the stakeholders’
requirements (Maglyas and Fricker, 2014; Praveen
et al., 2013). The process of requirements selection is
done by utilizing Enriched Genetic Algorithm. Hence,
the proposed RILP model is used to solve the
requirement scheduling problem. The proper ordering
of these requirements should reduce the final software
release delay. Once the prioritization process of
requirement is over, the chosen requirements are
required to be scheduled within the (fixed) static time
interval. Normally, the scheduling requirements are
taking two types of constraints such as the limited
available resources and precedence constraints. This
RILP model based requirement scheduling process is to
overcome the RCPSP problem.

In RILP, two types of metrics are used such as
Requirement dependencies and time span
representation of the project. The requirements and
their dependencies between them are characterized
as �4 = 5(�+, �+∗)|�+ ← �+∗9. The requirement set
having the requirements including �+ and �+∗, where
the requirement �+∗ depends on the requirement �+. In
time span representation of a project, let :���;+< is
defined as the time required to complete the whole
project is calculated as follows:
 :���;+< = � �$= >&+|?+ ∈ �A�BCD-B� (6)

where, &+ be the developing time, ?+ is defined as
processing job, �B is defined as job E belongs to the
requirement �. Then the earliest start time of the job
“a” is calculated as follows:
 ���+ = :���(�
�E��� ��$
�, ?+) (7)

It means that the time between the project start

(virtual job) and the real job. After that, the latest start

time of the job ?+ is computed as:

F��+ = :���(:���;+< , �
�E��� ��&) (8)

It means that the time between the completion of
project time and project end (virtual job). In RILP
model, the basic steps of the common Integer Linear
Programming (ILP) for the RCPSP problem are
considered and in addition some constraints are also
added that are used in formulating the ILP (Chen et al.,
2010). Therefore, this proposed approach is termed as
Revamped ILP. This proposed RILP model minimizes
the project cost and also minimizes the project time
span.

Consider the variable G+, occur in the time interval

between early start time and latest start time. This

variable occurs for each job ?+ and the time � in the
following RILP formulation characterizes the possible

time for the particular job to start. Each job

development is started with the already given deadline &B and the release date
B. Also, a decision variable HB,
is introduced and is equal to “1” only if the particular

job E processed in time �. In some cases, the jobs have

been developed in the specified time or take overtime to

develop. So I:-, denotes the volume of resources that

are available during the overtime and JI:-, denotes
the volume of resources that are hired in overtime. Then

formulation of RILP is shown as follows:

 K�����L�: � �. GOPQ,,�RSTUV,�OSTUV ,
 � W� �-,X J-, + � (�-,Z I:-, + �-,XZJI:-,),∈[\[],∈[] ^_-�
 (9)

Subject to:
 � G+,,�RS,`,�OS,` = 1, ��
 $%% ?+ ∈ �′ (10)

 � �. G+,,�RS,`,�OS,` + &�+ ≤� �. G,+∗,�RS,`∗,�OS,`∗ , ��
 $%% (?+, ?+∗) ∈ ?4 (11)

 � � G+,,b�c(,,+)d`∈e(fg) ≤ 1, ��
 $%% � ∈50,1, … , :���;+<9, � ∈ 51, … , �9 (12)
 � �B-HB,-B� ≤ I:-, + JI:-, , ∀�, � ∈ :/; (13)

 � HB,,�klm ,�*l = ��B , ∀E; (14)

 ��A1 − nB,,C ≥ � HB,p,pq, , ∀� ∈ :; (15)

 G+, ∈ 50,19 ��
 $%% � ∈ r���+ , F��+s, ?+ ∈ � ′ (16)
 nB,, = 0, ∀�t
B , … , &B − �Bu; (17)

 HB, = 0, ∀�t
B , … , &B − 1u; (18)

 nB,, , HB, ∈ 50,19, ∀E, � ∈ :; (19)

Res. J. Appl. Sci. Eng. Technol., 12(3): 347-354, 2016

352

Table 2: Scheduling results of model1

Req id

Team A (Start

day)

Team A (End

day)

Team B (Start

day)

Team B (End

day)

Team C (Start

day)

Team C (End

day)

Duration in

days

12 0 8 0 6 8

34 9 15 0 5 7 10 15

35 16 28 11 17 28

66 6 12 18 23 23

63 29 36 13 18 36

25 37 45 24 32 45

43 46 50 19 26 50

67 51 54 54

Table 3: Scheduling result of model 2 (Hybrid EGRILP)

Req id

Team A (Start

day)

Team A (End

day)

Team B (Start

day)

Team B (End

day)

Team C (Start

day)

Team C (End

day)

Duration in

days

67 0 4 0 6 6

34 5 14 0 5 7 10 14

66 15 25 6 13 25

35 26 37 15 27 37

12 14 23 28 32 32

43 38 40 33 36 40

25 41 49 37 44 49

63 50 53 53

 I:-, , JI:-, ≥ 0, ∀�, � ∈ :\:/; (20)

The goal of RILP is defined in the statement (9),

which reduces the development cost of requirement and

project development time. So as to minimize this

objective function of the proposed method, the

subsequent constraints are taken into consideration. The

constraint in (10) denotes that each job starts to process

only once, examine when two requirements are

executed by two variant teams. If the starting

requirement relies on second requirement, then the

second process is executed first after this process the

first process will be executed second. These processes

cannot be executed either in different order or at the

same time. These requirements dependencies are

presented in the constraint (11). Similarly, a single

development team examines only on a single

requirement at a time and is explained in (12). This

constrain used for reducing the technical

interdependencies among modules also reduces the

interdependencies among the tasks at particular time. In

certain cases, the job development procedure may

exceed the given time, in such cases during

preprocessing stage; it may use the available volume of

resources and also lease the resources. The constraint

(13) maintains that the needed amount of resources

must not go beyond the amount of available resources.

The constraint (14) is a situation for checking the

software development time needed for a requirement

should be between the release date and deadline. The

constraint (15) makes sure that the specific job begins

and ends in specific time. Constraint for all the

variables is defined as {0, 1} in the equation (16).

Finally the constraints (17) and (18) create all the

irrelevant variables to zero and the next constraints (19)

and (20) are defined as variable domain.

RESULTS AND DISCUSSION

A successful software release planning involves
two main process of requirements prioritization
(optimal requirement selection) and scheduling these
requirements to be released on time. Individually, the
Enriched Genetic Algorithm (EGA) is responsible for
the selecting the optimized requirements and the
Revamped Integer Linear Programming (RILP)
schedules these prioritized requirements so as to
minimize the project span.

We are comparing the simulations of our proposed

two models of prioritization and scheduling i.e., the

first model that does requirement prioritization and

scheduling using Enriched Genetic algorithm and

Revamped ILP algorithm. Our first model does not take

into consideration the time dependency factor and our

second model the Hybrid EGRILP considers time

dependency constraint while selecting and scheduling

the requirements of arelease. Our simulations prove the

process of software requirement prioritization and

scheduling performed using HybridEGRILP model

yields a very optimal solution. In our implementation

process, the requirement prioritization process begins

with 99 requirements given as input to the prioritization

process and the generated final eight optimal

requirements are given for scheduling.

Table 2 shows the scheduling results of our first

model and Table 3 shows the scheduling results of our

second model that considers time dependency

constraint during selection and scheduling process.

The results shows that the scheduling results of our

Hybrid ERILP models yield better results than our first

model.

In order to test the relation between varying

dependency and its effect on scheduling another set of

simulations were carried on these models. The main

Res. J. Appl. Sci. Eng. Technol., 12(3): 347-354, 2016

353

Table 4: Varying dependency and scheduling results on model 1

Req set

Dependency

ratio

No of

dependencies

Project span

-- No of delay (out

of 100 runs)

Average

revenue Max days Min days Average days

Small set (8

req, 60 days)

10 1 72 54 63 9 1587.95

20 2 84 54 60 29 1238.95

30 3 98 54 72 41 1029.55
40 4 108 54 81 49 889.95

Table 5: Varying dependency and scheduling results on model 2 (Hybrid EGRILP)

Req set
Dependency
ratio

No of
dependencies

Project span

-- No of delay (out
of 100 runs)

Average
revenue Max days Min days Average days

Small set (8

req, 60 days)

10 1 66 53 59.5 5 1657.75

20 2 78 53 65.5 19 1413.45

30 3 84 53 68.5 30 1221.5
40 4 102 53 77.5 40 1047.0

aim of this simulation was to check if the models
schedule the prioritized requirements always on
schedule even when we change the number of
dependency between the requirements. The important
research question to be answered here was the
relationship between the number of dependencies and
the probability of the project running out of time.

As the requirements selected for scheduling is 8 in
number, the possibility of number of dependencies are
8*7/2 = 28. In the proposed system simulation, the
requirements are prioritized bot the models to prepare
the project planning. The procedure is repeated 100
times continuously and the minimum, maximum and
the average time span of the project is calculated. The
Table 4 illustrates the simulation results of model1 and
Table 5 illustrates the simulation results of Hybrid
EGRILP model.

Our simulations prove the process of software
requirement prioritization and scheduling performed
using HybridEGRILP model yields a very optimal
solution and the proposed software release planning
system works better in terms of project span with
minimum delay and maximum revenue. These
simulations also show that considering the time
dependency constraint during scheduling and
prioritizations yield better results.

CONCLUSION

In this study, the requirement prioritization process
and requirement scheduling in software release
planning is described and also proposed is an Enriched
Genetic Algorithm (EGA) with Revamped Integer
Linear Programming (RILP) which considers time
dependency constraint while selecting and scheduling
requirements. In EGA the aging factor introduced for
eliminating premature convergence problem and the
dynamic population improves the computational
efficiency and decreases the computational complexity.
The Revamped Integer Linear Programming (RILP)
model is enriched from the previously utilized Integer
Linear Programming (ILP) relies upon the process of
scheduling the requirement, not only minimizing the
cost of the project, additionally it minimizes the project

span by adding additional resourceful constraints with

the general ILP formulation. Simulations are performed

on two models one that does not take into consideration

the time dependency factor and the other model the

Hybrid EGRILP model that considers time dependency

constraint added to the EGA and RILP algorithm. Our

simulations proves that the process of software

requirement prioritization and scheduling performed

using Hybrid EGRILP model yields a very optimal

solution and the proposed software release planning

system works better in terms of project span with

minimum delay and maximum revenue. These

simulations also show that considering the time

dependency constraint during scheduling and

prioritizations yield better results.

REFERENCES

Aasem, M., M. Ramzan and A. Jaffar, 2010. Analysis

and optimization of software requirements

prioritization techniques. Proceeding of the IEEE

International Conference on Information and

Emerging Technologies, pp: 1-6.

Arup, A.A., B. Goutam and P. Namita, 2011. A novel

approach for test case prioritization using priority

level technique. Int. J. Comput. Sci. Inform.

Technol., 2(3): 1054-1060.

Chen, L., M. van den Akker, S. Brinkkemper and G.

Diepen, 2010. An integrated approach for

requirement selection and scheduling in software

release planning. Requir. Eng., 15(4): 375-396.

Iqbal, A., F.M. Khan and S.A. Khan, 2009. A critical

analysis of techniques for requirement

prioritization and open research issues. Int. J. Rev.

Comput., pp: 8-18, E‐ISSN: 2076‐3336.
Li, C., J.M. van den Akker, S. Brinkkemper and G.

Diepen, 2007. Integrated requirement selection and

scheduling for the release planning of a software

product. In: Sawyer, P., B. Paech and P. Heymans

(Eds.), REFSQ, 2007. LNCS 4542, Springer-

Verlag, Berlin, Heidelberg, pp: 93-108.

Res. J. Appl. Sci. Eng. Technol., 12(3): 347-354, 2016

354

Ma, Z. and A.W. Krings, 2008. Dynamic populations in

genetic algorithms. Proceedings of the 23rd Annual

ACM Symposium on Applied Computing, pp:

1807-1811.

Maglyas, A. and S.A. Fricker, 2014. The preliminary

results from the software product management

state-of-practice survey. In: Lassenius, C. and K.

Smolander (Eds.), ICSOB, 2014. LNBIP 182,

Springer International Publishing, Switzerland, pp:

295-300.

Meenakahi, T., 2014. Reengineering a software process

by using unified foundation. Int. J. Invent. Comput.

Sci. Eng., 1(3), ISSN: 2348-3431.

Prabhat, G. and O. Ashish, 2012. A resource oriented

intelligent scheduling scheme to estimate software

release. Int. J. Adv. Res. Comput. Sci. Softw. Eng.,

2(9): 149-154.

Praveen, R.S., S. Subrahmanyan and P. Pushkar, 2013.
Optimal software release policy approach using
test point analysis and module prioritization. MIS
Rev., 18(2): 19-50.

Rahman, T. and M. Rokonuzzaman, 2014. A noble
methodology for users’ work process driven
software requirements for smart handheld devices.
Int. J. Softw. Eng. Appl., 5(4): 21-38.

Samuel, F. and S. Susanne, 2012. Release planning
with feature trees: Industrial case. In: Regnell, B.
and D. Damian (Eds.), REFSQ, 2012. LNCS 7195,
Springer-Verlag, Berlin, Heidelberg, pp: 288-305.

Sandhia, V. and R. Anil, 2014. Review and analysis of
software release planning models. Int. J. Eng. Adv.
Technol., 3(5): 1-7.

Shinto, K.G. and C.M. Sushama, 2013. An algorithm
for solving integer linear programming problems.
Int. J. Res. Eng. Technol., 2(7): 107-112.

