
Research Journal of Applied Sciences, Engineering and Technology 12(3): 361-365, 2016

DOI: 10.19026/rjaset.12.2344

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2016 Maxwell Scientific Publication Corp.

Submitted: August 28, 2015 Accepted: October 11, 2015 Published: February 05, 2016

Corresponding Author: Malladi Srinivas, Department of CSE, K L University, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

361

Research Article
GATALSS: A Generic Automated Tool for Analysing the Legacy Software Systems

Malladi Srinivas, G. Rama Krishna, K. Rajasekhara Rao and E. Suresh Babu
Department of CSE, K L University, India

Abstract: The software development is primarily more important for the business organization due to its dynamic
changes that has to be carried out in a less span of time. Consequently, software reuse will improves the quality of
the product, increases the productivity and reduces the costs in an organization. This study presents generic
automated tools for analyzing the legacy software systems, which consists of loader, set of parsers and dependency
mapper that visualize and transforms different legacy codes. Moreover, we have adopted ANTLR tool to analyze the
Legacy Software Systems using multi-threaded environment.

Keywords: Legacy software systems, multi-threaded environment, ANTLR Parser, performance analysis

INTRODUCTION

Legacy system are significant in the operations of

most enterprises. Most legacy systems were developed
utilizing programming paradigms and languages that
lack adequate designates for modularization.
Consequently, there is diminutive explicit structure for
a software engineer to hold on. This makes effective
maintenance or extension of such a system a vigorous
task. The modernization is often a sizably voluminous,
multiyear project, because deploying the modernized
system all at once introduces an unacceptable level of
operational peril. As a result, legacy systems are
typically modernized incrementally. A migration
strategy must ascertain that the system remains
functional in all aspects, during the modernization
effort. Several approaches to transmute legacy systems
have been proposed which can be relegated as
redevelopment, wrapping and migration (Bronius and
Aurimas, 2006).

Refactoring existing legacy systems to new
platform (such as refactoring to web services) first and
foremost thing is to understand the existing system in
all aspects. In order to analyse the existing system,
many researchers afforded their work in this domain to
propose different techniques/methodologies.
Understanding the legacy system needs expertise on the
key functional areas of the domain as well as the legacy
platform, Technology and its architecture. Human effort
and time will directly impact the cost of the whole
process. It is very difficult to get resources who has the
knowledge on the legacy system. Hence it is necessary
to automate the whole process of analysing and
understanding the legacy system.

The scope of this study will help to understand the
analysis of legacy system, enhancements with the

existing techniques. Hence, the proposed method
provides an effective tool for legacy system analysis
(software archaeology), extending some of the open
source techniques available in the market such as
ANTL (Another Tool for Language Recognition).

LITERATURE REVIEW

Analysis of the legacy systems helps to understand
the exact situation of the system and its entire process.
It lays a great foundation for the further development,
advancement or shift to the advanced technology. This
section gives literature review already proposed by
research committee. Few of them are listed below.

Cuadrado et al. (2008) proposed a technique to the
recovery of the legacy system architecture which
ensures proper documentation of the legacy system. For
better understanding of the legacy system, the Author
has extracted low-level details from configuration
options, users’ manual and source code. In addition to
that high-level Details acquired from requirements or
design documents. He used Different tools for recovery
process, the selection of the tool depend on
technologies, size, documentation, etc. The proposed
recovery technique uses the QAR tool for
documentation analysis, static analysis and dynamic
analysis. For Information extraction, the prime resource
used is user manual. They used a profiling tool for
extracting runtime information and reverse-engineering
tools like Jude and Omondo UML Studio to extract the
static view of the system, which will automatically
analyze Java source code, generating UML class
diagrams at class and package levels. The above tools
detects inheritance and dependency relations between
elements. The Java Profiler of TPTP 4.2 tool was used
for Dynamic analysis, which captures run time

Res. J. Appl. Sci. Eng. Technol., 12(3): 361-365, 2016

362

information-method invocation, execution time and
number of instances in memory. Higher level
architecture was obtained from the abstraction process
which consists of a series of filtering actions. The
analysis was executed combining both the static and
dynamic system views.

Salama and Aly (2008) proposed a mechanism
called Modernization Strategy Selection Framework
(MSSF). And Decision Making Tool, which analyses
the source code to measure its quality. The source code
selected was measured using the CCCC API. The
author suggested a hybrid modernization approach, for
the organizations to evaluate each component vs.
service in a separate thread to focus on its criteria’s
values alone.

Alahmari et al. (2010) proposed methodology and
effective guidelines for the identification of precise
services from legacy code. They introduced Meta
model that defines the characteristics of business
processes and service types. The approach focuses on
identifying these services based on a Model-Driven
Architecture approach supported by guidelines over a
wide range of possible service types. They emphasized
the importance of the classification of service types to
define service properties correctly. They used UML
activity diagrams that identifies coarse-grained services,
BPMN business process diagrams were used to identify
fine grained services, as well as coarse-grained services
(as composite services).

Lewis et al. (2006) used SMART tool to analyze
the legacy components for determining changes to be
made to enable migration of legacy system. This
SMART tool uses three sources of information to
support the analysis activity-First Information related to
the issues, problems that were noted by the team in
discovery process, second information provided by a
Service Migration Inventory (SMI) that extract the
many desired behavior of services executing within
SOAs into a set of topics and third source of
information entails the use of code analysis and
architecture reconstruction tools to analyze the existing
source code for legacy components.

Lewis and Smith (2007) proposed a SMART

technique with different behavior which assists

organizations in analyzing legacy capabilities for use as

services in an SOA environment. The goal of this

activity is to obtain descriptive data like the name,

function, size, language, operating platform and age of

the legacy components that are considered for

migration. In the recovery process, Architecture code,

complexity design paradigms, level of documentation,

coupling, interfaces and dependencies between

components extracted from Technical personnel. In

addition, the tool proposes to extract information

related to quality, maturity of legacy components,

problems, change history, user satisfaction, longer term

needs, cost for maintenance and finally effort needed

for these analyses.

Marchetto and Ricca (2008) an approach consists
in analyzing Legacy system application to understand
the system architecture and recognize the
functionalities. They proposed to recover functionalities
from textual use cases, functional requirements in
natural language and user manuals. They have chosen
to represent the application functionalities and their
relationships (e.g., extend and include) using an UML
Use Case diagram. When the size of the application is
considerable, documentation not up to date, the Author
suggested Reverse engineering techniques and tools to
recover and represent the architecture of the
application.

Nguyen et al. (2009) proposed a novel business
service engineering methodology -GAMBUSE that
identifies and conceptualizes business services in a
business domain, is based on a stratified reference
Service Meta-Model (SMM) that specifies and
correlates all modeling constructs for business
processes. During this step, the Service Schema
Specifications (SSS) of the as-is and to-be process that
contain their activities, business entities, attributes,
constraints, business rules, etc., are instantiated from
the SMM.

Huang et al. (2008) proposed approach to identify

the component (s) to be reused, analyze the

dependencies on other components, Identify the

depended components and generate legacy surrogates

for depended components.
Idu et al. (2012) proposed two mechanisms. One of

them is reverse engineering which performs its actions
by understanding and analyzing the source code. Other
is knowledge based which performs its action by
understanding the knowledge on domain and by
analyzing the experience of the initial promoters or
developers. By understanding the end user experience
with the help of the documents available/interview
process, one can understand the applications of the
legacy systems.

Vemuri (2008) used theory of Feature analysis to
locate the features from a legacy system which
identifies the key features of the legacy system from
end-users, the domain knowledge and expertise that
exists in the legacy system team, Identify test cases
from the regression test suite that represent a particular
feature or a group of features., They proposed code-
profiling tools which create internal product scripts that
would trace the code traversal paths and frequency via
various modules and packages of the legacy system.,
Execute the test cases identified for each feature and
collect the metrics generated by the profiling tools and
finally the metrics provide an insight into the un-used
areas of legacy code, level of code entangling that
exists in the legacy modules per every feature.

OVERVIEW OF ANTLR PARSER

Generally, there are several open source tools to

understand the legacy systems ANTLR is the powerful

Res. J. Appl. Sci. Eng. Technol., 12(3): 361-365, 2016

363

tool to perform better analysis of software system.

ANTLR (ANother Tool for Language Recognition)

dominant parser generator for studying, analyzing,

executing or translation of binary or text files. One of

the main advantages of this parser is building

languages, frame works and tools. Moreover, ANTLR

is capable of building parse trees with the help of the

input grammar. ANTLR can also used to process

abstract syntax trees, which are generated automatically

by the parsers. These tree parsers are unique to

ANTLR, which simplifies the processing phase of

abstract syntax trees.

This study analyses the legacy system. The analysis

of the legacy code helps us to solve the issues such as

upgrading the legacy system, effective understanding

the business rules, proper documentation for the

existing undocumented code and finally managing the

ripple effect. However to migrate or refactor,

maintaining and rewriting the existing system requires

good understanding of the structure and its

functionality.

PARSER ARCHITECTURE

The following Fig. 1 shows the parser architecture,

whose components are described in subsequent

sections. This tool takes the legacy systems source as

the input, tokenizes the code, does the dependency

mapping and rationalization and present the information

needed to the target state in the form of process flows,

code flows, rules, test cases and code artifacts.

Various components used in parser architecture:
Configuration loader: Loader will first load the

configurations, pattern specific/application specific

transaction extractor and then loads the project, which

needs to be analyzed.

Parsing engine: Parsing engine uses the grammar to

parse the source files and extract the information and

persist the data into data base for further analysis. The

sample information include List of functions, Global

variables, Function variables, Function calls, Class

Name with package

Database manager: Database manager is responsible

to persist all the parsed data tokens to the database and

get the required data from the database for further

analysis.

Dependency mapper: Once parser completes parsing

all the source files, the dependency manager will start

to identify the complete hierarchy of each of the service

operations, while finding the call hierarchy of each of

the operations, it identifies the type of the call based on

the given search patterns and gets the transaction name

with the help of Transaction Extractor.

Extractor: Extractors will extract the transaction

name/External Service Name from the search patterns

that are configured. There can be two types of

extractors mainly Generic transaction extractors to

capture generic types like Http Calls, SOAP Calls,

Fig. 1: Parser architecture

Res. J. Appl. Sci. Eng. Technol., 12(3): 361-365, 2016

364

Stored procedure calls and Application specific

transaction extractor to identify the service name of

other applications in the enterprise.

GATALSS Mechanism: We proposed a novel method

for analyzing the legacy software systems that makes

better scope in the business processes. Many of the

software systems become inadequate in terms of

capacity and functionality. However, these

organizations mainly rely on ‘legacy systems’ for

critical information and business operations support.

Hence, they cannot be simply scrapped but need to be

enhanced or integrated into the organizational

information infrastructure. This mechanism is

implemented using ANTLR Parser that provides

effective analysis, which improves business information

system.

The key aspects of ANTLR, accepts large class of

grammars and builds the parse trees for a given input

program. Eventually, it is more worth full if ANTLR is

integrated with multi-threading environment that

creates multiple instances which takes multiple files as

input and provide effective outputs for better analysis of

legacy systems.

Proposed GATALSS algorithm:

1. Loader Loads the configurations, analyses the

project base path and identifies sourcefiles to parse
and adds the file path into parser queue.
Parser starts the threads configured. Each thread
will do the below task

a. It picks the task from parser queue
b. Parse source and extract the required information

and add it into Data Persist queue.
2. One dedicated queue will poll the parsed

information from Data Persist queue and update
the database.
Note: Both parsing the Data persist will happen
parallel.

3. Once the parser completes parsing all the source

files then, Dependency manager will start analyse

the call hierarchy of the each service operations.

Parser will load the task in the Dependency queue.

The below steps will be done by Dependency

Thread in parallel.

a. It picks the service from the Dependency queue.

b. Find out the call hierarchy, type of the call and get

the transaction with help of Transaction Extractor.
c. Writes the Complete call hierarchy report of the

current service operations.

4. Generates the final report of the complete service

operation details with transactions.

The output of the tool is represented as an XML
file for visualization, Abstract Syntax Tree are
effective analysis for source code which can be
persisted to the database that are used for later
stage.

Fig. 2: Performance analysis of legacy C code

Fig. 3: Performance analysis of legacy C++ code

RESULTS AND DISCUSSION

We have analyzed various Legacy Applications

implemented using C, C++ and Java using proposed
mechanism. Various tests conducted on application
code ranging from simple to complex for the specific
language C, C++ and Java. Further we analyzed various
performance metrics like modularity, documentation,
Cohesion Complexity of method, reusability by taking
different applications.

Figure 2 gives the performance analysis of C
legacy code, it is observed that the complexity of the
methods, cohesion reusability are fair enough compared
to application software implemented in C++ and JAVA.
Further it is also observed that the documentation and
modularity is poor in C code compared to others.

Figure 3 illustrates the performance analysis of
C++ legacy code, It is observed that the modularity,
documentation are high compared to application
software implemented in c and java. Further it is also
observed that the Complexity of method, reusability fair
and cohesion is low in C++ code.

The performance analysis of JAVA legacy code
(Fig. 4) depicts that Complexity of methods, reusability,
cohesion are high and Documentation, modularity are
fair compared to other legacy codes used for
analysis.

2.0

1.5

1.0

0.5

0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
1
0

T
11

T
1
2

T
13

T
1
4

T
1
5

T
1
6

T
1
7

T
1
8

No of test with various legacy C code

P
e
rf

o
rm

an
c
e
 A

n
a
ly

si
s

Reusability
Modularity
Cohesion
Documentation
Company of methods

2.0

1.5

1.0

0.5

0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
1
0

T
11

T
1
2

T
13

T
1
4

T
1
5

T
1
6

T
1
7

T
1
8

No of test with various legacy C++ code

P
e
rf

o
rm

an
c
e
 A

n
a
ly

si
s

Reusability
Modularity
Cohesion
Documentation
Company of methods

Res. J. Appl. Sci. Eng. Technol., 12(3): 361-365, 2016

365

Fig. 4: Performance analysis of legacy JAVA code

CONCLUSION AND RECOMMENDATIONS

This study proposed generic automated tools for

analyzing the legacy software systems, which consists

of loader, set of parsers and dependency map per that

visualize and transforms different legacy codes.

Moreover, we have adopted ANTLR tool to analyse the

Legacy Software Systems such as c, c++ and java using

multi-threaded environment. It is observed that, it is not

sufficient to analyse legacy code for processing the

business application there is necessity to implement a

generic frame work to refactor the legacy code for

effective and efficient implementation of business logic.

REFERENCES

Alahmari, S., D.D. Roure and E. Zaluska, 2010. A

model-driven architecture approach to the efficient

identification of services on service-oriented

enterprise architecture. Proceeding of the 14th

IEEE International Enterprise Distributed Object

Computing Conference Workshops. Washington,

DC, USA.

Bronius, P. and L. Aurimas, 2006. Business knowledge

extraction from legacy information systems. Inf.

Technol. Control, 35(3): 214-221.

Cuadrado, F., B. García, J. Duenas and H.A. Parada,

2008. A case study on software evolution towards

service-oriented architecture. Proceeding of the

22nd International Conference on Advanced

Information Networking and Applications-

Workshops. Okinawa, pp: 1399-1404.

Huang, H.Y., H.F. Tan, J. Zhu and W. Zhao, 2008. A
lightweight approach to partially reuse existing
component-based system in service-oriented
environment. In: Mei, H. (Ed.), ICSR, 2008. LNCS
5030, Springer-Verlag, Berlin, Heidelberg, pp: 245-
256.

Idu, R.K.A., J. Hage and S. Jansen, 2012. Legacy to
SOA Evolution: A Systematic Literature Review.
In: Migrating Legacy Applications: Challenges in
Service Oriented Architecture and Cloud
Computing Environments. IGI Global, Hershey,
PA, pp: 419, ISBN: 1466624892.

Lewis, G. and D.B. Smith, 2007. Developing realistic
approaches for the migration of legacy components
to service-oriented architecture environments.
Proceeding of the 2nd International Conference on
Trends in Enterprise Application Architecture, pp:
226-240.

Lewis, G., E. Morris and D. Smith, 2006. Analyzing the
reuse potential of migrating legacy components to
a service-oriented architecture. Proceeding of the
10th European Conference on Software
Maintenance and Reengineering (CMSR, 2006).
Bari, pp: 23.

Marchetto, A. and F. Ricca, 2008. Transforming a java
application in an equivalent web-services based
application: Toward a tool supported stepwise
approach. Proceeding of the 10th International
Symposium on Web Site Evolution. Beijing, pp:
27-36.

Nguyen, D.K., W.J. van den Heuvel, M.P. Papazoglou,
V. de Castro and E. Marcos, 2009. GAMBUSE: A
gap analysis methodology for engineering SOA-
based applications. In: Borgida, A.T. et al. (Eds.),
Mylopoulos Festschrift. LNCS 5600, Springer-
Verlag, Berlin, Heidelberg, pp: 293-318.

Salama, R. and S.G. Aly, 2008. A decision making tool
for the selection of service oriented-based legacy
systems modernization strategies. Proceeding of
the International Conference on Software
Engineering Research and Practice, Las Vegas,
USA.

Vemuri, P., 2008. IEEE TENCON-2008 Modernizing a
legacy system to SOA-Feature analysis approach.
Proceedings of the IEEE Region 10 Conference
(TENCON, 2008). Hyderabad, pp: 1-6.

2.0

1.5

1.0

0.5

0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
1
0

T
11

T
1
2

T
13

T
1
4

T
1
5

T
1
6

T
1
7

T
1
8

No of test with various legacy JAVA code

P
e
rf

o
rm

an
c
e
 A

n
a
ly

si
s

Reusability
Modularity
Cohesion
Documentation
Company of methods

